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Simple Summary: The two most common cross-sectional imaging modalities, computed tomography
(CT) and magnetic resonance imaging (MRI), have shown enormous utility in clinical oncology. The
emergence of artificial intelligence (AI)-based tools in medical imaging has been motivated by the
desire for greater efficiency and efficacy in clinical care. Although a growing number of new AI tools
for narrow-specific tasks in imaging is highly encouraging, the effort to tackle the key challenges to
implementation by the worldwide imaging community has yet to be appropriately addressed. In
this review, we discuss a few challenges in using AI tools and offer some potential solutions with
examples from lung CT and MRI of the abdomen, pelvis, and head and neck (HN) region. As we
advance, AI tools may significantly enhance clinician workflows and clinical decision-making.

Abstract: Cancer care increasingly relies on imaging for patient management. The two most common
cross-sectional imaging modalities in oncology are computed tomography (CT) and magnetic reso-
nance imaging (MRI), which provide high-resolution anatomic and physiological imaging. Herewith
is a summary of recent applications of rapidly advancing artificial intelligence (AI) in CT and MRI
oncological imaging that addresses the benefits and challenges of the resultant opportunities with
examples. Major challenges remain, such as how best to integrate AI developments into clinical
radiology practice, the vigorous assessment of quantitative CT and MR imaging data accuracy,
and reliability for clinical utility and research integrity in oncology. Such challenges necessitate an
evaluation of the robustness of imaging biomarkers to be included in AI developments, a culture
of data sharing, and the cooperation of knowledgeable academics with vendor scientists and com-
panies operating in radiology and oncology fields. Herein, we will illustrate a few challenges and
solutions of these efforts using novel methods for synthesizing different contrast modality images,
auto-segmentation, and image reconstruction with examples from lung CT as well as abdomen,
pelvis, and head and neck MRI. The imaging community must embrace the need for quantitative CT
and MRI metrics beyond lesion size measurement. AI methods for the extraction and longitudinal
tracking of imaging metrics from registered lesions and understanding the tumor environment will
be invaluable for interpreting disease status and treatment efficacy. This is an exciting time to work
together to move the imaging field forward with narrow AI-specific tasks. New AI developments
using CT and MRI datasets will be used to improve the personalized management of cancer patients.

Keywords: artificial intelligence; cancer; computed tomography; deep learning; diffusion-weighted
magnetic resonance imaging; radiomics
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1. Introduction

Most common high-resolution cross-sectional anatomic imaging modalities, such as
computed tomography (CT) and magnetic resonance imaging (MRI), excel at providing
details regarding lesion location, size, morphology, and structural changes to adjacent
tissues [1]. There is abundant literature on qualitative and quantitative CT and MRI
focusing on oncological applications [2,3]. Such images capture features, e.g., tumor density,
enhancement pattern, margin irregularity, and relation to neighboring structures, which are
then used for tumor detection, initial cancer staging, assessment of treatment response, and
clinical follow-up [4]. For example, in routine clinical trials, radiologists provide lesion size
measurements using Response Evaluation Criteria in Solid Tumors (RECIST) guidelines
for medical oncologists and radiation oncologists to assess treatment response [5]. Such
size measurements are labor-intensive and can be replaced by new auto-segmentation tools
that help to calculate tumor volume in a more accurate, reproducible, and time-efficient
manner [6,7]. The primary driver behind the emergence of artificial intelligence (AI) in
medical imaging has been the desire for greater efficacy and efficiency in clinical care [8,9].
The topics of data sampling and deep learning (DL) strategies, including levels of learning
supervision (transfer learning, multi-task learning, domain adaptation, and federated and
continuous learning systems), are well covered in previously published reviews [10,11].
The importance of proper data collection and standardization methods, the appropriate
choice of the reference standard in relation to the task at hand, the identification of suitable
training approaches, the correct selection of performance metrics, the requirements of an
efficient user interface, clinical workflows, and timely quality assurance of AI tools cannot
be emphasized enough [12,13]. The imaging community must address the challenges
together and identify target areas that can benefit from AI opportunities. Present challenges
include testing the accuracy and reliability of quantitative CT and MRI data before its
inclusion in the AI pipeline as well as how best to integrate AI developments into clinical
practice [14,15].

Here, we will illustrate a few challenges and solutions of these efforts using novel
methods for synthesizing different contrast modality images, auto-segmentation and image
reconstruction with examples from lung CT as well as abdomen, pelvis, and head and
neck MRI. Discussion of AI developments in other imaging modalities, including X-ray,
mammography, ultrasonography, and positron emission tomography (PET), is beyond the
scope of this review.

1.1. Highlights

AI applications in CT and MRI oncological imaging may be leveraged for protocol
development, imaging acquisition, reconstruction, interpretation, and clinical care.

Herein are highlighted the key points of the review:

o Deep learning methods can be used to synthesize different contrast modality images
for many purposes, including training networks for multi-modality segmentation,
image harmonization, and missing modality synthesis.

o AI-based auto-segmentation for discerning abdominal organs is presented here. Deep
learning methods can leverage different modalities with more information (e.g., higher
contrast from MRI or many experts segmented labeled datasets such as from CT) to
improve tumor segmentation performance in a different modality without requiring
paired image sets.

o Deep learning reconstruction algorithms are illustrated with examples for both CT and
MRI. Such approaches improve image quality, which aids in better tumor detection,
segmentation, and monitoring of response.

o It is emphasized that large quantities of data are requirements for AI development, and
this has created opportunities for collaboration, open team science, and knowledge
sharing.
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1.2. AI in CT and MRI for Oncological Imaging

AI tools represent a potential leap forward in oncological imaging, including harness-
ing machine learning and DL to improve tumor characterization, identify imaging biomark-
ers for histopathological, metabolic, and functional status, and tailor treatment plans [16].
AI methods have shown the potential to stratify patients based on risk factors as well as
provide automated measurements of tumor volume via tumor segmentation [10,15,17].
Many studies have been published on machine learning tools for computer-aided or AI-
assisted clinical tasks [8,9,11,18]. However, most of these tools are not yet ready for clinical
deployment. It is of paramount importance that any AI-driven clinical tool undergo proper
training and rigorous validation of its generalizability and robustness before being adopted
into patient clinical care [15,19–21].

Highly accurate tumor segmentation would allow for reliable and reproducible longi-
tudinal tracking of tumor size and volume across time points. Automated segmentation
can be easily integrated into clinical oncological imaging workflows, overcoming the time
limitations of manual size comparisons [22,23]. Although RECIST remains the standard
methodology for clinical trials, it is difficult to implement in daily clinical practice [5].
Furthermore, rapid progress in computational power and new AI techniques can allow for
the processing of larger data sets to reveal new imaging biomarkers that are surrogates for
tumor subtypes and disease status [24]. AI models can now be constructed incorporating
the full spectrum of clinical, genomic, and histopathologic data in tumor classification [25],
tumor subtyping with non-invasive quantitative imaging data, and tumor histopathology.
Lastly, genomics data can revolutionize cancer management by guiding treatment selection
and determining prognosis [26,27].

AI efforts in CT and MRI are already well underway and have demonstrated re-
markable progress in various image analysis tasks [8–11]. In cancer screening, DL tech-
niques have shown promise in CT screening for lung cancer and colonic polyps [28], MRI
screening for prostate cancer [29], discriminating glioblastoma from brain metastasis with
conventional MR images [30], breast cancer risk assessment with MR images [31,32], and
segmentation of CT and MR images of head and neck (HN) cancer for MR-guided ra-
diotherapy [33–35]. AI models trained on large datasets can extract high-dimensional
representations, which show an increase in specificity compared with lower-dimensional
machine learning methods often used in computer-aided detection software for lung cancer
screening [36]. The advent of precision medicine in oncology aims to tailor individual
treatment plans based partly on tumor genomics and histopathology [37]. Typically, this
data is obtained through invasive procedures. However, the ability to non-invasively
capture such data can augment precision medicine with radiomics and therefore change
clinical management. In neuro-oncology, in particular, research efforts aim to predict the
presence of IDH1 mutations, 1p/19q co-deletion, and EGFR, as well as VEGF and p53 status,
by identifying precise imaging biomarkers via machine learning and DL techniques [38].
Tumor subtyping may further aid the determination of cancer prognosis [39]. Attempts
have been made using AI tools to predict survival outcomes in glioblastoma multiforme
based on baseline brain MRI [40] as well as to predict response to chemoembolization in
hepatocellular carcinoma (based on baseline liver MRI [41]. A comprehensive understand-
ing of the invasive histopathological and molecular approaches, which provide insight
into intratumor heterogeneity and the role of advanced MRI imaging in characterizing
microstructures, cellularity, physiology, perfusion, and metabolism, is lacking [42,43]. Thus,
developing informed, cutting-edge, robust AI tools using imaging datasets is necessary to
quantify imaging biomarkers and improve patient diagnostics and outcomes.

2. Specific-Narrow Tasks Developed Using AI for Radiological Workflow

Figure 1 illustrates the many opportunities for specific-narrow tasks developed us-
ing AI in radiological workflow, which range from imaging protocol development and
data acquisition to the interpretation of images for clinical care. AI can be helpful in
patient protocol systems, starting with selecting proper imaging tests depending on the
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organ under study, exam scheduling, protocoling, and retrieving available prior images
for comparison. All major imaging vendors incorporate AI, which shows great promise
for patient positioning [44], image acquisition, and reconstruction pipelines by reducing
scan time, suppressing artifacts, and improving overall image quality via optimization of
the signal-to-noise ratio (SNR) [45,46]. AI-based image reconstruction methods can also
help minimize the radiation dose from CT images by improving image quality [23,35]. AI
tools developed for specific, narrow tasks, such as case assignment, lesion detection, and
segmentation of regions of interest, are critical for oncological imaging. Reconstruction
of images using DL algorithms has shown remarkable improvements in image contrast
and SNR for CT [19,47,48] and MRI [49–51]. As mentioned above, manually segmenting
longitudinal tumor volume is laborious, time-consuming, and difficult to perform accu-
rately. Previously developed auto-segmentation methods were sensitive to changes in
scanning parameters, resolution, and image quality, which limited their clinical value [52].
AI-based algorithms have been successful at tumor segmentation and have shown better
accuracy and robustness to imaging acquisition differences [49–51]. In parallel, new AI
tools have been developed for the quantification of image features from both radiomics
and lesion classification [16,53,54]. AI models could help integrate multi-modality imaging
data and molecular markers as available [25]. AI methods are also amenable to developing
predictive and prognostic models for clinical decision-making and/or clinical trials [55].
With these developments, AI is poised to be the main driver for innovative CT and MR
imaging, and it can play an important role in clinical oncology.
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This is an exciting time for imaging professionals, in which radiologists and scientists
will remain essential for producing the highest quality imaging data and its interpretation
for clinical care. Herein, we illustrate the challenges of CT and MR image analysis using
AI tools as well as offer some potential solutions originating from our experience using
examples from lung CT and MRI of the abdomen, pelvis, and HN region.

3. Major Challenges with Solutions for Radiological Image Analysis

The major challenges in radiological image analysis are described pointwise with
solutions in this section. Accordingly, we have summarized a selection of original and
review articles with references, the narrow-specific AI tasks, title, objectives, advantages,
recommendations, and limitations (if applicable) in Table 1. The select articles from 2018 to
2022 cover AI applications and their use in (i) medical imaging, (ii) image reconstruction
and registration, (iii) lesion segmentation, detection, and characterization, and (iv) clinical
applications in oncology. It was beyond the scope of this work to include the full list of
articles published in this area.
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Table 1. Summary of Select Artificial Intelligence Literature on CT and MRI for Oncology.

Study Narrow-Specific Tasks Design: Title Objective Advantages/Recommendations Limitations

Hosny, A. et al. [8] Medical Imaging (MI) Review: Artificial Intelligence
(AI) in radiology

To establish a general understanding of
AI methods, particularly those

pertaining to image-based tasks. The AI
methods could impact multiple facets
of radiology, with a general focus on

applications in oncology, and
demonstrate how these methods are

advancing the field.

There is a need to understand that AI is
unlike human intelligence in many ways.
Excelling in one task does not necessarily
imply excellence in others. The roles of

radiologists will expand as they have access
to better tools. The data to train AI on a

massive scale will enable a robust AI that is
generalizable across different patient
demographics, geographic regions,

diseases, and standards of care.

Not Applicable (NA)

Koh, D.M. et al. [15] MI
Review: Artificial Intelligence

and machine learning in
cancer imaging

To foster interdisciplinary
communication because many

technological solutions are being
developed in isolation and may

struggle to achieve routine clinical use.
Hence, it is important to work together,
including with commercial partners (as

appropriate) to drive innovations
and developments.

There is a need for systematic evaluation of
new software, which often undergoes only

limited testing prior to release.
NA

Razek, A.A.K.A. et al. [56] MI
Review: Artificial Intelligence
and deep learning of head and

neck cancer

To summarize the clinical applications
of AI in head and neck cancer,

including differentiation, grading,
staging, prognosis, genetic profile, and

monitoring after treatment.

AI studies are required to establish a
powerful methodology and coupling of

genetic and radiologic profiles to be
validated in clinical use.

NA

McCollough,
C.H. et al. [57] MI

Review: Use of Artificial
Intelligence in computed

tomography dose optimization

To illustrate the promise of AI in the
processes involved in a CT examination,

from setting up the patient on the
scanner table to the reconstruction of

final images.

AI could be a part of CT imaging in the
future, and both manufacturers and users
must proceed cautiously because it is not
yet clear how these AI algorithms can be

evaluated in the clinical setting.

NA

Lin, D.J. et al. [45] Image reconstruction and
registration (IRR)

Review: Artificial Intelligence for
MR Image Reconstruction: An

Overview for Clinicians

To cover how deep learning algorithms
transform raw k-space data into image
data and examine accelerated imaging

and artifact suppression.

Future research needs continued sharing of
image and raw k space datasets to expand
access and allow for model comparisons,
defining the best clinically relevant loss

functions and/or quality metrics by which
to judge a model’s performance, examining

perturbations in model performance
relating to acquisition parameters, and

validating high-performing models in new
scenarios to determine generalizability.

NA
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Table 1. Cont.

Study Narrow-Specific Tasks Design: Title Objective Advantages/Recommendations Limitations

McLeavy, C.M. et al. [58] IRR Review: The future of CT: deep
learning reconstruction

To emphasize the advantages of deep
learning reconstruction (DLR) over

other reconstruction methods regarding
dose reduction, image quality, and

tailoring protocols to specific
clinical situations.

DLR is the future of CT technology and
should be considered when procuring new

CT scanners.
NA

Jiang J. et al. [59]
Lesion segmentation,

detection, and
characterization (LSDC)

Original Research:
Cross-modality (CT-MRI) prior
augmented deep learning for

robust lung tumor segmentation
from small MR datasets

To develop a cross-modality (MR-CT)
deep learning segmentation approach

that augments training data using
pseudo-MR images produced by
transforming expert-segmented

CT images.

The advantage of this model is that it is
learned as a deep generative adversarial

network and transforms expert segmented
CT into pseudo-MR images with

expert segmentations.

A minor limitation is the
number of test datasets,

particularly for
longitudinal analysis, due

to the lack of additional
recruitment of patients.

Venkadesh, K.V. et al. [60] LSDC

Original Research: Deep
Learning for Malignancy Risk

Estimation of Pulmonary
Nodules Detected at Low-Dose

Screening CT

To develop and validate a deep
learning (DL) algorithm for malignancy
risk estimation of pulmonary nodules

detected at screening CT.

The DL algorithm has the potential to
provide reliable and reproducible

malignancy risk scores for clinicians from
low-dose screening CT, leading to better

management in lung cancer.

A minor limitation, the
group did not assess how

the algorithm would
affect the

radiologists’ assessment.

Bi, W.L. et al. [10] Clinical Applications in
Oncology (CAO)

Review: Artificial Intelligence in
cancer imaging: Clinical

challenges and applications

Highlights AI applied to medical
imaging of lung, brain, breast, and
prostate cancer and illustrates how

clinical problems are being addressed
using imaging/radiomic feature types.

AI applications in oncological imaging need
to be vigorously validated for

reproducibility and generalizability.
NA

Huang, S. et al. [20] CAO
Review: Artificial Intelligence in
cancer diagnosis and prognosis:
Opportunities and challenges

Highlights how AI assists in cancer
diagnosis and prognosis, specifically

about its unprecedented accuracy,
which is even higher than that of

general statistical applications
in oncology.

The use of AI-based applications in clinical
cancer research represents a paradigm shift
in cancer treatment, leading to a dramatic
improvement in patient survival due to

enhanced prediction rates.

NA

Diamant, A. et al. [33] CAO
Original research: Deep learning

in head & neck cancer
outcome prediction

To apply convolutional neural network
(CNN) to predict treatment outcomes of
patients with head & neck cancer using

pretreatment CT images.

The work identifies traditional radiomic
features derived from CT images that can

be visualized and used to perform accurate
outcome prediction in head & neck cancers.

However, future work could be done to
further investigate the difference between

the two representations.

There is no major
limitation mentioned by

the authors. However, they
do mention that the

framework used here
considers the central slice,
and the results could have
been further improved by

incorporating the
entire tumor.
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Table 1. Cont.

Study Narrow-Specific Tasks Design: Title Objective Advantages/Recommendations Limitations

Liu, K.L. et al. [61] CAO

Original research: Deep learning
to distinguish pancreatic cancer

tissue from noncancerous
pancreatic tissue: a retrospective

study with cross-racial
external validation

To investigate whether CNNs can
distinguish individuals with and
without pancreatic cancer on CT,

compared with
radiologist interpretation.

CNNs can accurately distinguish pancreatic
cancer on CT, with acceptable

generalizability to images of patients from
various races and ethnicities. Additionally,

CNNs can supplement
radiologist interpretation.

A minor limitation is the
modest sample size.
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3.1. Variability in Imaging Acquisition Pose Challenges for Large-Scale Radiomics
Analysis Studies

Radiomics, or the non-invasive extraction of quantitative information from images, is
well developed in oncology, with several groups demonstrating its utility for both cancer
diagnosis and treatment response prediction of multiple solid cancers [62]. However,
these successes have yet to be translated into routine clinical use due to the variability in
MRI [63] and CT [64] images stemming from varying image acquisition protocols and multi-
vendor scanners that affect radiomics features. Hence, cross-site image harmonization
remains an urgent, unmet need to enable robust multi-institutional and clinical use of
radiomics biomarkers.

Commonly used image harmonization methods, such as ComBat, use the statistical
properties of the data distribution to reduce the variability of radiomic features by removing
so-called “batch effects” by shifting [65] distributions and using the unrealistic assumption
of a unimodal feature distribution. Multi-modality of feature distributions can be addressed
with multiple mixture Gaussian-based ComBat [66] normalizations, but such methods still
require pre-determined groupings and a fixed set of features.

Recent developments in domain adaptation using generative adversarial networks
(GANs) have successfully applied image harmonization to CT and MRI images [67–70].
However, such methods have limited success due to their reliance on global image simi-
larity losses, which can lead to the introduction of unexpected artifacts and hallucinated
features as well as the potential loss of diversity in the textural content. Disentangling DL
methods, which extract domain-invariant content such as tumor shape, anatomic context,
and domain-specific style, are more robust to domain differences and best mitigate mode
collapse issues [12,71]. However, DL methods also require the training of multiple one-to-
one modality mapping methods, which increases the need for computational and memory
capacity to accommodate a variety of scanner and imaging protocols.

Other prior works have used GANs for image synthesis for a variety of purposes [72–77],
including generating PET images from CT using bi-directional contrastive GANs con-
structed to maximize the information between two networks generating CT to PET and PET
to CT images, respectively. To generate missing PET images, synthesizing liver contrast to
improve tumor detection by combining a GAN with a self-attention convolutional network
and a region-based discriminator to improve tumor segmentation [77], multi-contrast MRI
generation using CTs with the so-called MedGAN for medical imaging applications [73], as
well as ensuring realistic texture preservation with texture preservation losses implemented
into the GAN network training [72]. Whereas the aforementioned methods focused on
preserving textural characteristics and inverse consistency to ensure synthesis, other works
used attention formulations to focus the network towards regions or structures of interest.
One technique, SAGAN [74], uses region masks to provide additional constraints. Another
technique, PSIGAN, combines derived structure information using a jointly trained seg-
mentation and image synthesis network for learning to segment on MRI images without
labeled MRI datasets [78]. Recently, a new CVT-GAN method combined a convolutional
framework with vision transformers to extract global and local self-attention methods
for high-quality standard-dose PET (SPET) reconstruction using low-dose PET (LPET)
images [76].

In prior work, a disentangled deep network approach was developed that employs
a single universal content encoder with a single variational autoencoder to extract both
image content and style for one-to-one domain adaptation [75]. Using our approach, a style
code is extracted from the images and converted into latent style codes that can then be
used to modulate image generation. A key difference between our variational auto-encoder
approach and other prior methods is that our method learns a one-to-many modality
translation using a lightweight scaling module that extracts the style code for the different
modalities as a scaling function, which is then injected into a single decoder to generate
the different modality images. Therefore, our approach makes use of a smaller memory
footprint architecture consisting of a single domain in-variant content encoder, a lightweight
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style coder network, and a single decoder network. Other methods require multiple one-to-
one modality synthesis networks for every single considered modality [72–77].

Extensive details of our method have been published in several outlets [59,75,79,80].
Briefly, our method includes a domain-invariant content encoder network composed of
a sequence of convolutional layers and a single style coding network that extracts the
latent style code for the different modalities. The style coding network is constructed using
a variational autoencoder, which uses a latent Gaussian prior to span the styles of the
various modalities and is constructed using 5 convolutional pooling layers, followed by
a global pooling and fully connected layer. The style code is transformed into a latent
style scale by a latent scale layer that is then used to modulate the features computed by
the decoder network to synthesize images corresponding to different modalities. This
network is jointly optimized using adversarial losses using a patchGAN discriminator,
content reconstruction losses, image translation losses, and latent code regression losses as
detailed in prior work [75]. In addition, a multi-tasked training strategy is used in which
a two-dimensional (2D) Unet architecture is employed to learn to generate multi-organ
segmentation from the synthesized image sets. The networks are optimized using the
Adam method with a batch size of 1 and a learning rate of 2 × 10−4, with early stopping
used to prevent overtraining [81].

The result of synthesized T2-weighted (T2w) MRI into T1-weighted (T1w) MRI from
CT datasets available in the open-source Combined Healthy Abdominal Organ Segmen-
tation (CHAOS) challenge dataset are shown in Figure 2. Using a published method
described by Jiang and Veeraraghavan [75], the model was trained using 20 unlabeled MRIs
and an entirely different set of 30 patients with expertly segmented CT images containing
multiple organ segmentations. Testing was performed on another group consisting of
10 patients who had undergone MRI exams. Both sequences were acquired on a 1.5 Tesla
scanner. As shown, our approach produced a realistic synthesis of such images, indicating
potential use in image harmonization.
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Figure 2. (A,B) Synthesis of T2-weighted (T2w) and T1-weighted (T1w) magnetic resonance imaging
(MRI) images from computed tomography image volume available in the open-source combined
healthy abdominal organ segmentation (CHAOS) challenge dataset.

Synthesis realism was measured by computing the similarity between the features
computed within the individual organs on synthesized images and those same organs in
real images. Our method produced a low distance of 5.05 and 14.00 for T1w and T2w MRI.
In comparison, this distance was 73.90 and 101.37 for T1w and T2w MRI using CycleGAN,
which learns multiple one-to-one modality translations, and 73.39 and 77.49 using another
state-of-the-art one-to-one modality translation method called StarGAN [82].



Cancers 2023, 15, 2573 11 of 22

3.2. Volumetric Segmentation of Tumor Volumes and Longitudinal Tracking of Tumor
Volume Response

Currently, radiographic response assessment during treatment and at follow-up is
primarily applied using bi-dimensional RECIST metrics [5], which have many limitations
and cannot quantify the underlying phenotypic heterogeneity within tumors. For practical
use, automated and consistent pipelines for quantifying longitudinal tumor response
dynamics are needed. Reliable segmentation is also necessary to overcome the practical
limitations of radiomics analysis methods, which require volumetric tumor segmentation.

Recent works have shown the possibility of obtaining a more accurate tumor prog-
nosis by utilizing longitudinal tumor response image features extracted from radiomics
analysis [54,83–86]. Multi-tasked AI methods that combine segmentation and classification
of serial images have shown the ability to predict tumor treatment response for rectal
cancers better [87]. In this context, AI-enabled longitudinal image analysis is needed to
both segment and characterize tumor changes at the voxel level. Containerized and operat-
ing system-independent segmentation tools, such as DeepNeuro [88] and DeepInfer [89],
provide well-known AI models for specific disease sites, primarily brain and prostate
cancers. Community supported resources, such as MONAI [90], have increased the ability
to extract, transform, and load data for tailored DL model development, thereby lowering
the barrier to DL tool assessment for the general research community.

These successes have spurred growth in offering commercial tools for normal tissue
segmentations for several disease sites. However, successes in normal tissue segmentation
and a few cancers, such as brain gliomas, have yet to be translated to tumors in other
disease sites and imaging modalities, such as contrast-enhanced and non-contrast CTs
and cone-beam CTs that are routinely used in radiotherapy. New DL methods that learn
the underlying spatial anatomic context, including those that use vision transformers and
self-attention methods [91,92] have improved the ability of DL to extract the segmentation
of challenging tumors. Another related recent innovation is the development of distilla-
tion learning and cross-modality learning [45,93,94], in which information from different
modalities, such as CT or MRI, is used to inform and improve the extraction of relevant
features that better signal the contrast between tumor and background. In addition to
improving segmentation in imaging modalities with low soft-tissue contrast, such as CT
and cone-beam CT, using the information learned from higher contrast modalities (e.g.,
MRI) can also benefit learning in new modalities for disease sites (such as MRI for the lung),
in which expertly segmented datasets are limited [95].

Figure 3 shows the results with example segmentations produced by a cross-modality
educed distillation learning method (CMEDL) [79], which combines learning from unpaired
or unrelated sets of T2w turbo spin echo MRI and CT as well as cone beam computed
tomography (CBCT) images for the segmentation of lung tumors. Segmentation on T2wMRI
produced via unpaired distillation learning, in which many CT datasets (n = 300) relative
to MRI datasets (n = 80) were available, demonstrates the additional use case of unpaired
distillation learning for data augmentation. The results shown in Figure 3A–C are produced
by three different models that were trained using the CMEDL approach. Extensive details
of the CMEDL method are in the prior published methods for CT lung tumor [96], MRI lung
tumor segmentation [79], and CBCT-based lung tumor segmentation [59]. Concisely, the
CMEDL architecture makes use of two parallel segmentation subnetworks for a so-called
tracker network (using MRI [Figure 3A,B], CT [Figure 3C]), and a student network (using CT
[Figure 3A], CBCT [Figure 3B], and T2w MRI [Figure 3C]). Any segmentation architecture
can be used, as shown using the popular Unet as well as a dense network called a multiple
resolution residual network [97]. The teacher network forces the student network to extract
features that better signal the contrast between foreground and background by applying
feature distillation losses that match the high-level features computed from corresponding
synthesized teacher modality (e.g., MRI) and student modality (e.g., CT) images.
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cases consisting of (A) computed tomography (CT) image; (B) cone-beam CT image; and (C) T2-
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expert delineations are in yellow.

The network itself is trained with unpaired images, in which corresponding sets of
multiple-modality scans are not required for training. To accomplish training with un-
paired modalities, a cross-modality synthesis network created using a GAN is applied.
The GAN consists of a generator created using a 3DUnet that computes dense pixel re-
gression by using tanh activation, and a PatchGAN discriminator network to distinguish
the synthesized from the real images was used in training. The details of the number of
images used in training, training losses, training epochs, etc. are in published methods [79].
The teacher network is initialized with example real images and corresponding segmen-
tations to learn to extract the appropriate set of relevant features. The same network is
then jointly optimized with the student network to further refine the extracted features
using synthesized images produced from the images input to the student network using
the GAN-based image-to-image translation network. The teacher and student networks
are jointly optimized during training to make use of multi-task optimization. The GAN
network for synthesizing the cross-modality images is cooperatively optimized such that
this network’s parameters are updated only in iterations when the segmentation network’s
parameters are frozen, and vice versa, to ensure stable training convergence.

The results of segmenting the tumor on CT images using a Unet network on a sample
test case and optimized via the CMEDL approach with CTs (n = 377) and MRIs (n = 82)
from external and internal institution datasets, respectively, are shown in Figure 3A. The
results of segmenting an external institution CBCT image using a Unet network optimized
with the CMEDL approach optimized with unpaired CBCTs (n = 216) and 82 MRIs from
different sets of patients are shown in Figure 3B. Figure 3C shows a sample test-set MRI seg-
mentation produced by training a Unet using the CMEDL approach. Separate models were
constructed for the three results and optimized with different datasets. All networks were
optimized with the Adam optimizer, with an initial learning rate of 2 × 10−4, batch size of 2,
and early stopping was used to prevent overfitting of the networks. As shown in Figure 3,
the algorithm generated segmentations closely approximates the expert delineation for the
representative test cases.

Although the aforementioned method focuses on the segmentation of the gross tu-
mor volume (GTV), it is also important to consider the tumor margin needed for ef-
fective treatment when using the AI-defined tumors for treatment planning and deliv-
ery [59,78,79,97,98]. For instance, in the context of thermal ablation, prior work by Singh
et al. [99] showed that incorporating blood perfusion information from dynamic contrast
MRI using commercial software tools could be utilized to better define the margins of
breast tumors for thermal ablation. In the context of radiation therapy, the segmented GTV
is often expanded to produce a clinical target volume (CTV) to incorporate the microscopic
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spread by using treatment planning software to generate automatic expansion with fixed
criteria for different disease sites while aiming to limit radiation exposure to the adjacent
healthy tissues. However, this approach does not always account for microscopic disease,
and hence, it is resolved using a clinician’s manual delineation that leads to inter-rater
variability [100]. Cardenas et al. [101] addressed this issue of clinical variability by using a
stacked autoencoder deep network formulation to automatically learn the CTV definition
for head and neck cancers while accounting for adjacent healthy tissues both for lymph
nodes and high-risk CTV. A different prior work by Xie et al. [102] addressed the issue of
lung cancer CTV definition by accounting for respiration and GTV contained within the
CTV by constructing a customized loss function within a 3DUnet approach.

3.3. Optimization of Dose and Image Quality Improvement in CT Scans

CT is an essential component of modern healthcare [103,104]. With technical im-
provements, such as iterative reconstruction (IR) [105], dual-energy CT [106], ultra-high
resolution CT [107], and the latest innovation of photon counting CT [106], the spectrum of
potential clinical applications has dramatically increased [103]. Nevertheless, there is still
much to be done to reduce radiation exposure while suppressing noise and preserving or
improving spatial and contrast resolution [103,105,108,109]. Although current model-based
IR algorithms and their variants compensate for the increased noise caused by reduced
radiation doses, the shifted image texture with IR relative to conventional filtered back
projection is subjectively inferior and less preferred by radiologists [108–110].

To address this challenge and democratize technology, researchers have looked to
AI- or DL-based image reconstruction solutions to improve imaging capabilities while
reducing radiation doses [111]. DL-based CT reconstruction (DLR) has emerged as a
promising alternative to conventional CT reconstruction methods [109,112]. Several lit-
erature reports demonstrate DLR to be superior to IR at noise suppression and artifact
reduction [113–115]. Therefore, radiologists subjectively prefer DLR for several diagnostic
tasks [113,116]. One commercially available DL-based solution, TrueFidelity (General Elec-
tric Healthcare [GEHC], Madison, WI, USA), trains a deep convolutional neural network
(CNN) to map low-dose CT images to a higher quality and high-dose version of the same
data [109,115]. TrueFidelity differentiates and suppresses noise while reconstructing CT
images with characteristics resembling the higher-quality scans from the training set [109].
A recent clinical investigation reported improvements in radiologists’ subjective image
quality scores as well as gains in contrast-to-noise ratio and noise reduction while reducing
radiation dose by more than 50% for the detection of liver lesions >0.5 cm from portal
venous abdominal CT exams [117]. DLR methods are expected to be the future of CT
image reconstruction [58,118]. With improved algorithms, computational power, and more
data, DL-based image reconstruction will continue outperforming model-based IR and its
variants at generating low-noise images without sufficient image quality across diagnostic
tasks for human viewers [58,118].

3.4. Optimization of Image Quality in MRI Scans

Conventional MR data acquisition methods provide excellent soft-tissue contrasts
in images and are routinely used for oncological diagnostic workups. SNR and spatial
resolution constraints, motion artifacts, and longer scan times can, at times, be limiting
factors in MRI, depending on the organ of interest [17,49]. For cancer patients unable to stay
in the MRI scanners for a half hour or longer, there is an urgent need for rapid and robust
MR imaging acquisition that improves patient comfort and throughput. For example,
GEHC, a major MRI vendor, recently introduced the novel DL-based MR reconstruction
(Recon), AIR™ Recon DL method, which is revolutionizing MR image reconstruction
for anatomical T1w- and T2w imaging by improving the image quality with high SNR,
sharpness, and reduced scan time.

The AIR™ Recon DL reconstruction process converts raw k-space data into high-
quality images as its output [49,119]. This new approach will generate images free of
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ringing artifacts and reduced noise, leading to increased diagnostic accuracy compared
with conventional methods. The AIR™ Recon DL pipeline does not require resolution-
degrading filters, which are commonly embedded in the traditional reconstruction pipeline.
Instead, it utilizes a deep CNN that works on raw, complex-valued imaging data to produce
a clear output image. The CNN has been specifically designed to allow for a user-controlled
reduction in image noise, reduction of truncation artifacts, and enhancement of edge
sharpness. There is also a window of opportunity for AI to both improve image quality
and quantify imaging biomarkers derived from quantitative techniques, such as diffusion-
weighted (DW)-MRI that measures the random Brownian motion of water molecules in
tissue [120].

Recent literature has shown promise for DW-MRI powered with DL Recon in diag-
nostic applications for brain tumors [121], liver cancer [122], and prostate cancer [123],
reporting higher SNR and image quality. We are working with GEHC scientists to apply
this technology to different body organs at our center, thereby DL Recon improving di-
agnostic images and the robustness of imaging biomarkers. This new DW-MRI protocol
will allow for modification of the MRI acquisition parameters, including b-values and the
number of excitations. Figure 4 demonstrates preliminary experience with this method,
and the images were acquired from patients with papillary thyroid cancer and lymphoma.
A whole-body DW-MRI was performed on the lymphoma patient to detect the existence of
disease spread to other vital organs.
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Figure 4. (A) exhibits the line diagram of the diffusion-weighted magnetic resonance image (DW-
MRI) powered with deep learning recon image acquisition scheme. (B) DW-MR image (b = 0 s/mm2)
acquired from a 39-year-old female patient with papillary thyroid cancer. The blue arrow points
to the thyroid gland. (C,D) whole body DW-MR image (b = 0 s/mm2) acquired from a 61-year-old
male patient with lymphoma, showing representative diffusion images from the abdomen, pelvis,
including liver (light orange arrow), pancreas (dark orange arrow), and the prostate (purple arrow).
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3.5. Bias in AI Models

Although the growing number of new AI models for narrow-specific tasks in CT and
MRI is highly encouraging, the effort to tackle key challenges to implementation by the
worldwide imaging community has yet to be addressed. AI-based system pipelines consist
of data sampling and DL strategies, including various levels of learning supervision, before
drawing conclusions from the learned model [9–11,15,16]. Therefore, uncertainty and bias
are important considerations when working with AI tools [12]. Uncertainty is the degree of
variability in the model’s predictions, although the bias is a systematic error in the model.
However, inherent uncertainties and biases are associated with each step that arises in data
collection, noise in the data, and modeling approaches with AI tools [124]. Reproducibility
assesses measurement uncertainty, which in measurement typically arises from multiple
sources. It is critical that the results of AI systems are both reproducible and reliable to
enable the development of personalized cancer care strategies [21,91,125].

The AI tools developed so far have shown pivotal results in providing better accuracy
for prognosis, diagnosis, and assessment of treatment response using tumor characteristics
obtained from radiologic images. However, these studies do not explicitly account for bias
in their AI training sets [12]. Bias in AI studies remains a major challenge that must be
addressed by proper data collection practices. Suboptimal data collection can introduce
bias and lead to a misleading perception of model performance, especially in subpopula-
tions that may not be appropriately represented in a study’s dataset. The data collection
process must be described in detail to demonstrate scientific rigor, which requires trans-
parent inclusion and exclusion criteria as well as the target cancer patient demographics.
Unequal demographics of cancer patients and disparate access to the healthcare system
due to economic inequalities impede the study of certain cancers in underrepresented
populations [114]. Variability in the manifestation of cancers across subgroups can act as
confounders. Access to large, high-quality datasets across low-income countries is often
understudied due to a lack of research funding. Moreover, pediatric patients and young
children are not smaller versions of adults and should not be studied as such. Their or-
gan size, shape, and appearance on CT or MRI exams differ considerably from those of
adult patients. An AI system that may appear functional for adult patients should not be
assumed to work for pediatric patients. While accounting for potential biases, investigators
may unintentionally limit their data search to their centers or within collaborating groups.
One solution to this limiting factor would be to rebalance datasets by including more
representative data from underrepresented communities before training AI models.

Another potential solution is to train AI systems using raw or unprocessed CT scan
data. Most CT scans that train current AI systems are processed for the human visual
system. As a result, the steps to generate a human-interpretable image may lead to a loss of
potentially relevant information because raw data is downsampled and compressed [126].
Moreover, each vendor implements proprietary solutions to enhance the quality of their
scans so that they are more appealing than their competition. These processing steps inject
unique patterns unrelated to the target signal that the AI systems could spuriously use to
correlate with class labels. The issues stemming from post-processed data training could be
overcome by developing end-to-end AI systems with raw CT data.

4. Discussion

Cross-sectional CT and MRI are an integral part of the diagnostic workup. Applica-
tions of novel narrow-specific AI tasks in these imaging techniques have shown promise
for data acquisition, image segmentation and registration, and assessment of tumor re-
sponses to therapy in brain tumors [30], breast [32], head and neck [33,35], liver, lung,
and abdominal cancers [29,61,127]. For example, the DL method has exhibited as an ef-
fective and clinically applicable tool for the segmentation of the head and neck anatomy
for radiotherapy [34]. Despite exciting advancements in the AI field, challenges to the
translation of these AI-based tools into radiology practice still exist. In reviewing these
challenges and potential solutions, we recommend certain strategies for the CT and MRI
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fields in the era of AI, including collaboration between radiologists, treating physicians, and
imaging scientists. The awareness of the general accuracy of the AI model and the degree
of confidence in each prediction are needed and should be well documented. Oncology pro-
fessionals must communicate their imaging needs for patient management to radiologists,
thus motivating research and obtaining funding to perform the necessary pilot studies.
Radiology must embrace the need for quantitative CT and MRI metrics beyond lesion size
measurements. Our recommendations for the application of AI in CT and MRI may apply
to additional imaging modalities, such as X-ray, mammography, ultrasonography, and PET.
The extraction of imaging metrics using AI should be an integral part of radiology and/or
oncology workflows without impeding productivity and may be incorporated into fully
automated workflow systems in the future. The longitudinal tracking and extraction of
imaging metrics from registered lesions and the tumor environment using AI methods will
be both efficient and productive tools for interpreting clinical follow-up. Finally, analysis of
big imaging data with the representation of cancer patients from all types of demograph-
ics as well as additional sources of data, such as genomics from clinical trial analysis, is
expected to create a data-driven taxonomy of cancer, which will then serve to optimize
treatment decisions and improve cancer prognosis. This is the best time to work together
to move the imaging field forward with narrow-specific AI tasks.

5. Future Directions

One of the goals of AI tool development is to introduce automated methods ethically
and safely into radiology practices. Since the inception of AI, experts have predicted
the potential of highly tailored AI technologies for clinical oncological applications. The
benefits of AI in cancer care go beyond the optimization of established treatment strategies,
but we must ensure rigorous multi-disciplinary testing of these AI models before their
adoption into clinical radiology workflows. However, regulatory oversight is necessary to
address quality control issues and avoid algorithmic biases.

6. Conclusions

In this review, a few challenges and opportunities for AI application to oncological
imaging were summarized using novel methods for synthesizing different contrast modal-
ity images, auto-segmentation, and image reconstruction with examples from lung CT and
abdomen, pelvis, and head and neck MRI.

The major highlights of this review were centered on the application of AI methods,
which can be used for the following narrow-specific tasks: (i) to synthesize different
contrast modality images for a variety of purposes, including training networks for multi-
modality segmentation, image harmonization, and missing modality synthesis, (ii) auto-
segmentation for discerning abdominal organs is presented here, (iii) to improve CT and
MR image quality, which will aid in better tumor detection, segmentation, and monitoring
of response, and (iv) has created opportunities for collaboration, open team science, and
knowledge sharing.

In the era of precision medicine, there is a growing interest in improving clinical
decision-making as well as time to share knowledge and work together. AI tools are being
developed for narrowly-specific tasks for oncological imaging needs and may contribute
significantly towards enhancing clinician workflows and clinical decision-making.
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