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The practice of oncology requires analyzing and synthesizing abundant data. From the
patient’s workup to determine eligibility to the therapies received to the post-treatment
surveillance, practitioners must constantly juggle, evaluate, and weigh decision-making
based on their best understanding of information at hand. These complex, multifactorial
decisions have a tremendous opportunity to benefit from data-driven machine learning
(ML) methods to drive opportunities in artificial intelligence (AI). Within the past 5 years,
we have seen AI move from simply a promising opportunity to being used in prospective
trials. Here, we review recent efforts of AI in clinical trials that have moved the needle
towards improved prediction of actionable outcomes, such as predicting acute care visits,
short term mortality, and pathologic extranodal extension. We then pause and reflect on
how these AI models ask a different question than traditional statistics models that read-
ers may be more familiar with; how then should readers conceptualize and interpret AI
models that they are not as familiar with. We end with what we believe are promising
future opportunities for AI in oncology, with an eye towards allowing the data to inform
us through unsupervised learning and generative models, rather than asking AI to perform
specific functions.
Semin Radiat Oncol 33:386−394 � 2023 Elsevier Inc. All rights reserved.
Introduction

In just a few years, we have seen artificial intelligence (AI)
and machine learning (ML) in healthcare transition from

buzzwords to clinical application. AI/ML has permeated not
just the frontlines of mammography,1,2 stroke,3 sepsis,4

readmission,5 acute kidney injury,6,7 diabetic retinopathy8,9

and melanoma detection10 but more controversially and less
visibly, the murky backlines of health economics like predic-
tion of no-shows11 and healthcare utilization.12

The main theme of existing AI in medicine is diagnosis.
Can AI also be used to improve outcomes? In this paper, we
explore several such examples where prediction of acute
events in prospective trials are used to improve longer term
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outcomes for patients. We highlight how AI is complemen-
tary to traditional statistics. We also discuss the philosophy
of AI in clinical studies and how to incorporate this informa-
tion into our understanding of traditional statistics para-
digms that are the foundation of clinical research. We end
with a discussion of the future of AI in trials, and explore
how AI can move beyond prognostication and decision mak-
ing into generation of knowledge.
Present Oncology AI Trials
Early AI-driven studies in oncology have focused on retro-
spective model training and validation to predict cancer
control and toxicity, similar to a biomarker.13,14 In recent
years, AI has been to either drive decision points in phase 2
or phase 3 clinical trials (Table 1).

Emergency Room Visits and Hospital
Admissions
Hong et al. at Duke University sought to tackle the problem
of acute care visits, which include unplanned emergency
department (ED) and hospital admissions during radiation.
Admissions are problematic oncologically as it may interrupt
radiation treatments, allowing accelerated repopulation to
https://doi.org/10.1016/j.semradonc.2023.06.004
1053-4296/© 2023 Elsevier Inc. All rights reserved.
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occur and as well as increase healthcare costs. In the first
paper, they first used a ML framework to train various mod-
els suited for biomedical data, ultimately selecting gradient
boosted trees (GTB) whose predictive performance reached
an area under the receiver operating characteristic curve
(AUROC) of 0.798.21

Using this model, Hong and colleagues subsequently
designed and ran a single institution randomized quality
improvement trial to see if their GTB model could decrease
the number of acute care visits. Out of 962 patients who
received radiation between January-June 2019, the GTB
model selected 311 patients at high risk (>10% predicted
risk of acute care visit) who were randomized to either stan-
dard once-a-week clinic visits or mandatory twice-a-week
visits during radiation.15 For patients deemed low risk or
high risk by the GTB model, the true rate of acute care visits
was 2.7% and 17.4%, respectively. The randomized trial
showed that in the high risk cohort, twice-a-week visits dur-
ing radiation decreased the acute care visit rate from 22% to
12%, and in the window of 2 weeks after radiation from
33% to 22%. In this example, the GTB model classified
patients as high- and low-risk and the between arm compari-
sons were analyzed using traditional statistical methods,
showing how both analysis methods can be used in tandem.
Short Term Mortality
Predicting short term mortality is a popular goal, as this
knowledge can be used to drive interventions such as
prompting goals of care discussion or referrals to hospice
and/or palliative care services. Oncologists are quite poor at
predicting survival of their patients22,23 and there are often
delayed referrals to palliative care.24

Popular prognostic models include recursive partitioning
analysis (RPA) and diagnosis-specific graded prognostic
assessment (dsGPA). These decision-tree models use a limited
number of variables such as age and performance status to
estimate overall survival in different patient populations25,26

with recent incorporation of molecular biomarkers.27,28 Yet,
the EHR holds a vast amount of data that is underutilized for
prognosis estimation.

Parikh and colleagues at the University of Pennsylvania
aimed to leverage EHR data to predict 180 day mortality to
drive timely serious illness conversations (SIC) in patients
with metastatic cancer. They performed model develop-
ment29 where they trained and internally validated random
forest, gradient boosted trees (GBT), and logistic regression
algorithms on a cohort of 26,525 patients and 559 features
(following feature engineering and selection). At a pre-speci-
fied alert rate of 2% (ie, the proportion of patient encounters
flagged), all 3 models were correct approximately 50% of the
time when they predicted that a patient would die within
180 days (positive predictive value PPV ranging from 45% to
51%).

Manz et al. validated this GTB framework in a prospective
silent trial that classified patients with new oncology encoun-
ters as either high or low risk of 6 month mortality.16 They
surveyed oncologists to fix the event rate at 2.5% (ie, what
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proportion of total patients are predicted to be sick) and
achieved a PPV of 45% (Table 3), which is similar to 49%
achieved by the GTB model during the previous model
development study.29

This silent trial was subsequently followed up by a ran-
domized stepped-wedge cluster intervention trial.17 Over
14,000 patients were enrolled from 8 clinic groups that were
randomized to 4 intervention wedge periods. The groups
received either a behavioral nudge−weekly email discussing
SIC performance and up to 6 patients predicted to be at high
risk of 6 month mortality (≥10%) with opt-out text messag-
ing reminders−or usual care which was weekly email sum-
marizing SIC performance. Across all encounters, the
intervention increased SIC from 1.3% to 4.6%. In the subset
of high risk encounters (»4100 patients), intervention
increased SIC from 3.6% to 15.2%. It was not reported what
the increase in SIC was in patients who died within 6 months
(iem, truly had short term mortality or the ground truth for
high risk).

Other AI models have incorporated both EHR structured
data—diagnoses, procedures, vital signs, labs−as well as
unstructured data such as clinical notes. Gensheimer and
colleagues at Stanford used EHR, inpatient billing, and can-
cer registry data to train a Cox proportional hazards model
to predict overall survival. They used over 12,500 patients
with metastatic solid tumors and 4000 features including
notes, labs, vital signs, procedures, and diagnoses.30 Notes
were represented as bags of words, where the top 100,000 1-
to 2-word phrases were tallied for each note. This model was
subsequently compared with physician prediction and a tra-
ditional performance status-based model, and shown to be
superior.31 In a follow up quality improvement trial to vali-
date their model, Gensheimer et al. compared the rate of
advance care planning (ACP) in a cohort of oncology clinics
that received weekly emails of patients predicted to have <2
year survival to a control cohort of clinics without such
emails. The intervention group had an ACP documentation
rate of 35% compared to 3% in the control.19
Head and Neck: Extranodal Extension
Head and neck cancer represents one of the more challeng-
ing sites to deliver high doses of radiation due to nearby
organs-at-risk which can cause very significant side effects
including xerostomia and mucositis. Due to the better prog-
nosis of HPV-associated oropharyngeal cancer, several com-
pleted and ongoing trials are looking to de-escalate therapy
in this sub-population of patients to spare toxicity, with
promising results.32-35 While HPV is a clearly detectable bio-
marker, another prognostic marker is the presence of extra-
nodal extension (ENE) in regional lymph nodes, which is an
indication for postoperative chemoradiation.36 If patients
who will have ENE can be identified at diagnosis, they may
potentially be offered definitive chemoradiation upfront and
avoid the toxicity of additional surgery. However, identifying
ENE can be very challenging for radiologists, with only about
50% of pathologic ENE cases detectable via imaging by
head and neck neuroradiologists.37 One of the major
advancements in computer vision over the past decade was
the rise of deep convolutional neural networks (CNN)38 in
an era of high performance computing.

Leveraging CNN towards an important clinical question,
Kann and colleagues trained and internally validated a CNN
model to detect ENE using 653 segmented lymph nodes
from 270 patients.39 As ground truth, a node was considered
to have ENE if the pathology report (1) confirmed the pres-
ence of lymph node positivity and ENE (microscopic or mac-
roscopic) and (2) it could be determined from the report the
node’s location, anatomic level, and size. Their CNN model
achieved sensitivity, specificity, PPV and NPV of 0.88, 0.85,
0.66, and 0.95, respectively, to predict ENE.

Taking the next logical step, Kann et al. performed exter-
nal validation on a separate institution’s data as well as pub-
licly available data from the The Cancer Genome Atlas head
and neck imaging data, showing that their model exceeds
the the diagnostic ability of 2 head and neck neuroradiolo-
gists.40 This article led to editorials pointing out operational
issues, chief among them (1) the extra effort required to
segment lymph nodes to run the model (notable as other
specialties do not perform this in practice); (2) that radio-
graphically negative necks can hide occult positive nodes
and/or ENE (which would not have been included in train-
ing the model); and (3) that model is learning to predict
microscopic ENE mostly from non-radiologic features
(making comparisons with expert radiologists perhaps
unfair).41-43

To further demonstrate the generalizability of their CNN
model to clinical trial data, Kann et al. applied it to data from
the completed Phase III trial ECOG-ACRIN E3311,33 which
aimed to de-escalate therapy in patients with HPV-associated
oropharyngeal cancer without high-risk pathologic criteria
such as macroscopic (>1mm) ENE. Yet >30% of enrolled
patients demonstrated ENE, requiring postoperative chemo-
radiation.44 Using 311 segmented lymph nodes from 177
presurgery CT scans and pathology reports from ECOG-
ACRIN E3311, they compared their model’s performance
against 4 head and neck radiologists who were provided
with an educational tool to help diagnose ENE. On this
high-quality, contemporary dataset, the algorithm achieved
AUROC 0.85 and outperformed human experts.
Head and Neck: Involved Nodal Radiation
Another potential area for treatment de-escalation is in
decreasing the dose or volume of the elective nodal fields.
There is controversy about coverage of elective nodal regions
during radiotherapy for head and neck cancer. Using a data-
driven approach, Chen and colleagues at UT-Southwestern
used data from the INFIELD trial of dose and volume de-
escalation45 to train a hybrid multi-objective radiomics and
3D-convolutional neural network model to predict for
lymph node malignancy.46 The model classifies each lymph
node as involved or suspicious based on CT and PET imag-
ing. This model was tested prospectively in the INRT-AIR
(Involved Nodal RadioTherapy using AI-based Radiomics)
trial.47
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The goal of INRT-AIR was to eliminate elective neck treat-
ment and focus only on involved or suspicious nodes in
newly diagnosed oropharynx and larynx/hypopharynx squa-
mous cell carcinoma. The gross disease and CTV were
treated to 70 and 63 Gy, respectively, in 35 fractions with
suspicious nodes treated to 66.5 Gy. The primary endpoint
was the risk of solitary elective nodal recurrence (ie, nodal
recurrence in the classic ENI field without synchronous in-
field or distant failure). In 68 patients enrolled, initial results
at 1 year showed no solitary elective nodal recurrences and 1
patient who died from in-field local progression.18 Along
with work by Kann et al. to detect ENE (discussed above),
these early results in head and neck cancer show promise for
AI-driven treatment de-escalation.
Tissue Biomarkers
One promising avenue for bringing AI into clinical trials is
exploratory analysis of previously conducted trials to look
for biomarkers.

Esteva and colleagues performed a secondary analysis of 5
phase III trials in prostate cancer comparing external beam
RT with or without hormone therapy to determine if incor-
porating deep learning of digitized histopathology slides was
superior to standard clinical risk stratification models.48

Using a large pre-trained network,49 the authors trained their
deep learning models on approximately 5600 patients and
16,000 histopathology slides. Compared to NCCN risk
group models using standard clinical variables, the authors
showed that deep learning of histopathology images resulted
in 0.92% to 14.6% relative improvement in predicting 6
binary outcomes: 5/10 year distant metastasis, 5/10 year bio-
chemical failure, 10 year cancer specific survival, and 10 year
overall survival.
Adaptive Radiotherapy
Adaptive radiotherapy, where one modifies the treatment
plan due to anatomic changes or treatment response during
treatment, holds significant promise to improve workflows
and outcomes, with many practical considerations to be
addressed.50 Platforms such as Varian Ethos (Varian Medical
Systems, Palo Alto, CA) incorporate proprietary AI-driven
image segmentation, deformable registration, and plan-
ning.51 Several Varian-funded trials are exploring Ethos in a
variety of different disease sites with the potential to benefit
from online replanning.52 Given the promising results from
INRT-AIR (discussed above), Sher and colleagues are using
involved nodal radiation with or without near marginless
Table 2 Commonly Used Binary Classification Metrics With Descri

Classification Metric Description

Sensitivity / recall / true positive rate Proportion of s
Specificity / true negative rate Proportion of h
Precision / positive predictive value Proportion of s
Negative predictive value Proportion of h

Abbreviations: FP, false positives; FN, false negatives; TP, true positives; T
daily adaptation on Ethos in DARTBOARD (Daily Adaptive
Radiotherapy to Better Organ-at-Risk Doses).20
Key Points About Interpreting AI
Trials

Diagnostic Testing and Model Evaluation
Diagnostic testing is traditionally used to determine the pres-
ence or absence of a disease or condition, or response from a
therapy. In classification, a diagnostic test can be considered
either positive or negative to predict if a patient has the dis-
ease, for example. Whether the patient has the disease (sick)
or not (healthy) is the true state. There are various statistics
that assess how well a binary diagnostic test performs to
determine the patient’s true state. Some of the more common
ones are listed in Table 2. Sensitivity is the true positive rate,
or the probability of a positive result given the patient is sick.
Specificity, or true negative rate, is the probability of a nega-
tive result given the patient is healthy. Negative predictive
value (NPV) is the probability of being healthy given a
negative test while the positive predictive value (PPV) is the
probability of being sick given a positive test, assuming a
consistent prevalence of disease.

In classification, a tradeoff must be made between sensi-
tivity and specificity. For a given diagnostic test, if the sensi-
tivity increases, the specificity decreases, and vice versa. For
example, if we would like to increase our ability to diagnose
prostate cancer, we could decrease the prostate specific anti-
gen (PSA) threshold for a biopsy from (say) 3.0 ng/mL to
0.5 ng/mL. This would absolutely increase the test’s ability to
detect prostate cancer in sick patients (sensitivity), though
would also decrease the test’s ability to rule out prostate can-
cer in healthy patients(specificity).

Many of the aforementioned examples utilizing AI in clin-
ical trials are using these models similar to diagnostic tests to
aid in selecting the best treatment option for patients. The
Manz et al. model27 predicted whether patients were low
risk (survival >180 days) or high risk (survival ≤180 days).
The NPV was 96.9% and PPV was 45.2%, meaning the prob-
ability of identifying a patient as healthy given the model
classified the patient as healthy was 96.9% while the proba-
bility of identifying a patient as sick given the model classi-
fied the patient as sick was only 45.2%.

As seen in Table 3, the resultant specificity was very high
(98.6%) while the sensitivity was low (27.4%). This discrep-
ancy illustrates the tradeoffs that must be made to meet per-
formance requirements: to be correct 45% of the time when
predicting a high risk patient when the model is fixed to
ptions and Definitions

Definition

ick patients correctly labeled TP
TPþFN

ealthy patients correctly labeled TN
TNþFP

ick predictions correctly labeled TP
TPþFP

ealthy predictions correctly labeled TN
TNþFN

N, true negatives.



Table 3 Confusion Matrix Summarizing the Performance of Prospective Validation of the Penn Gradient Boosted Tree Model
to Predict 180 Day Mortality16

Total Patients (24,582) Predict High Risk (23,963) Predict Low Risk (619*)

High risk patient (1022) 742 false negatives 280 true positives Sensitivity 27.4%
Low risk patient (23,560) 23,221 true negatives 339 false positives Specificity 98.6%

NPV 96.9% PPV 45.2%
Abbreviations: NPV, negative predictive value; PPV, positive predictive value.
High risk and low risk patients’ survival were >180d and ≤180d, respectively. The paper reported total patients, sick patients, healthy patients,

negative predictive value, positive predictive value, and sensitivity. The rest of the values were derived with possible rounding errors.
* The number of “Predict sick” events was fixed at 619/24,582 = 2.5% via a survey of oncologists.
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only allowing 2.5% of patients to be labeled as high risk, the
model will miss approximately 75% of high risk cases.

Is there a way to help determine what thresholds to use or
a way to compare diagnostic tests (ie, ML models) against
each other? One way is through the receiver operating
characteristic curve (ROC), which plots the sensitivity (true
positive rate) by 1-specificity (false positive rate).53 The area
under the curve of a ROC (AUROC) allows one to compare
how well a classifier or diagnostic test performs against other
such models or tests. AUROC is a number from 0 to 1 in
which 1.0 represents perfect prediction and 0.5 represents
no discrimination (ie, the diagnostic test performs as well as
a coin flip; Fig. 1). The AUROC can also be viewed as the
average sensitivity across all possible false positive rates.

In model development for the Hong clinical trial, the
authors compared random forest, support vector machine,
logistic regression with LASSO regularization and the GTB
model to classify patients as either high- or low-risk for acute
care visits.21 The GTB model had the highest AUROC of
0.798 and was chosen for their subsequent randomized
trial15 (Fig. 2).
AI Compared to Frequentist/Bayesian
Analysis
In order to see how AI methods can improve clinical trials, it
would be helpful to compare and contrast it with traditional
Figure 1 ROC-curves with different areas under the curve (AUC)
or c-statistic. The better the discrimination, the larger the AUC or c-
statistic. An AUC of 0.5 means no discrimination, an AUC = 1
means perfect discrimination. Figure from Christensen 2009.54

(Color version of figure is available online.).
frequentist and Bayesian methods. The overwhelming major-
ity of clinical trials follow the frequentist paradigm of statis-
tics that utilizes null hypothesis significance testing with the
use of P-values, confidence intervals, along with type I and II
error controls. “Statistical significance tests are part of a rich
piecemeal set of tools intended to assess and control the
probabilities of misleading interpretations of data—often
called error probabilities”.55 In the context of a prospective,
double blinded, randomized trial with pre-registration of
endpoints, multiplicity adjustments, and checks to ensure
model assumptions are valid, one can make a reliable statisti-
cal inference. Some of the weaknesses of frequentist trials
stem from the need for an adequate sample size. When
Figure 2 Validation receiver operating characteristic (ROC) curves
for machine learning techniques. Although all 3 methods yielded
strong predictive results, gradient boosted trees (GTB; 0.798) had
greater area under the ROC curve than random forest (0.770; not
shown), support vector machine (0.759; not shown), and least
absolute shrinkage and selection operator (LASSO) logistic regres-
sion (0.768) methods. All had greater area under the ROC curve
compared with GTB trained on only disease and treatment-related
characteristics (0.742). Figure from Hong et al. 2018.21 (Color ver-
sion of figure is available online.)
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enough patients are not recruited for a study, one cannot
make a strong conclusion from the accrued patients. In addi-
tion, subgroup analyses are not definitive because they are
typically not adequately powered, so a lot of information is
not able to be utilized fully.56

Bayesian statistics is now becoming a more popular
method with 2 randomized studies recently published,57,58

but has been used in radiation oncology for over 30 years, as
it was used in the Medical Research Council (MRC) neutron
and CHART trials.59 Bayesians approach data very differ-
ently; they use a prior distribution that uses available back-
ground information mathematically described in various
distributions (eg, Gaussian, Beta, or Gamma). Instead of
looking at alternatives to a null hypothesis, Bayesians calcu-
late the conditional probability of the tested hypothesis given
the prior information in combination with the most recent
available data, such as those obtained in a clinical trial. Once
the data is evaluated a statistical inference is made via the
combination of what you believed before the trial (prior dis-
tribution), available data from the trial (likelihood), to form
new beliefs (posterior distribution).

One of the strengths of Bayesian statistics−especially in its
classical form−is that no information is wasted, as any data
available will update your prior beliefs. Problems with Bayes
include the difficulty of having an accurate prior (a long
standing controversy) and the question of its ability to prop-
erly control for error probabilities in contrast to frequentist
statistics.60

Machine learning is a field borne out of the intersection of
computer science and statistics. The term “statistical machine
learning” is nearly synonymous with “machine learning” as
almost all ML models use statistics in some way (with nota-
ble exceptions such as many clustering methods). While
there is a significant overlap in the statistical methods, there
is an overall difference in approach. In general, a statistical
inference approach makes assumptions on the distribution
of the data and the model that best captures a phenomenon,
whereas an ML approach makes minimal assumptions about
the data and phenomenon (treating them as a black box)
and aims to achieve a goal, such as predicting an outcome.
These 2 approaches are well-summarized in Leo Breimen’s
“Statistical Modeling: The 2 Cultures” paper as the data
modeling culture and the algorithmic modeling culture,
respectively61; the lessons from this 2001 paper are still rele-
vant today. ML is infamous for using layers of high-dimen-
sional complex mathematical algorithms where the human
user cannot understand how the predictions are being made,
admittedly with recent progress on interpretable AI.62

As illustrated in the prior case examples, AI models are
generally validated through several steps of validation on
independent test sets, and then inferences are made based
on the accuracy of the algorithm’s predictions. AI then can
leverage the strength of both frequentist and Bayesian analy-
ses. ML can be subjected to randomized studies and be sub-
ject to the same rigorous tests as other interventions in a
frequentist manner. AI methods can also preserve the infor-
mation from the studies and use that data to further refine its
algorithms in a Bayesian manner. They will be able to make
predictions on subgroup analyses that can be further vali-
dated, such as in real world data studies, where “big data”
evaluation can analyze thousands of data points with contin-
uous refinement, a task that current clinical trials methods
are unable to perform.

AI/ML should not be thought of as a replacement to tradi-
tional statistics. The multi-faceted uses of AI along with the
different types of questions it answers allows for synergy
with traditional statistics in clinical trials. Frequentist and
Bayesian statistics are still appropriate for making inferences
about data. AI algorithms and ML models are useful to clas-
sify patients and can be used to aid in determining eligibility
or used in stratification of a clinical trial. Targeting interven-
tions to certain groups of patients based on classification
from an AI algorithm or ML model allow for improved and
personalized treatment. Clinical trials may still be designed
and analyzed using traditional frequentist or Bayesian
approaches while implementing components of AI/ML, as
shown in the above use cases.
The Future of AI in Oncology Trials

Clinical Trial Screening
Clinical trial recruitment is a challenging task. Departments
often hire multiple staff members (clinical research coordina-
tor) who will enroll, administer, and track patients. Auto-
mated systems using NLP may improve eligibility matching,
decrease time spent, and increase enrollment.63 NRG Oncol-
ogy, an oncology research group funded by the National
Cancer Institute, is moving towards utilizing NLP to aid
participating institutions in screening. NRG-CC005 is a
randomized cancer screening trial to determine if 10 year
colonoscopies are non-inferior to 5 year colonoscopies in
terms of cancer incidence. Because these patients may have
had their first diagnosis of 1 to 2 nonadvanced adenomas
within the prior 4 years, this study offers NLP to be used by
participating institutions to search their EHR to identify
potentially eligible patients.
Clinical Trial Design
Generative models which can synthesize data have come to
the forefront of mainstream AI through ChatGPT (Chat Gen-
erative Pretrained Transformer). Blurring the line between
discriminative and generative models, Liu and colleagues at
Stanford sought to use data-driven methods to determine
the impact of overly restrictive eligibility criteria in clinical
trials in order to design more inclusive trials.64 Using eligibil-
ity criteria from 10 trials for advanced non-small cell lung
cancer (NSCLC), they designed rules to select patients from
a real-world de-identified database from Flatiron Health
(New York, NY) that would have met eligibility and also
received the same treatments, using propensity scores to
adjust for confounding and emulate randomization. Using
synthetic clinical trials using various combinations of inclu-
sion/exclusion criteria, they found that many of these criteria,
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such as specific lab values, could be relaxed to increase the
number of eligible patients with minimal effect on outcomes.
Clinical Trial Conduct
NRG Oncology is implementing AI models to conduct radia-
tion plan treatment reviews with the goal to replace the man-
ual review by a radiation oncologist or, if unable to complete
the review, identify cases requiring a manual review. This
would significantly reduce workload on the trial’s radiation
oncologists without compromising quality assurance. Cur-
rently this is an endpoint on NRG-GU009, a phase III ran-
domized trial using prostate ribonucleic acid (RNA)
expression to individualize concurrent therapy with radiation.
Uncertainty and Missingness
Although the promise of ML in medicine is great, as with any
technology, there are pitfalls to be aware of. Well publicized
ML issues include the shutting down of Google Flu Trends
due to its faulty predictions65 and allegations of racism when
the COMPAS algorithm was used for determining recidivism
rates during criminal sentencing.66 David Watson, lecturer
in AI at King’s College points out a critical issue that “[h]igh-
performance algorithms are often opaque, in the sense that it
is difficult or impossible for humans to understand the inter-
nal logic behind individual predictions. This raises funda-
mental issues of trust. How can we be sure a model is right
when we have no idea why it predicts the values it does?”.67

For clinical trials evaluating and using machine learning,
messy data, such as incomplete assessments, non-adherence
of treatment, and missingness, can be problematic, as for tra-
ditional clinical trials. Techniques to handle missing data,
such as imputation techniques are helpful, but do not pro-
vide a fix for all problems of missing data. Going forward,
increasing attempts to prevent missing data, as well as sensi-
tivity analyses to understand the impact of missing data on
the results and subsequently, conclusions, are warranted.68

Similarly, nonadherence to a treatment schedule is a problem
for data analysis for virtually all randomized trials, which
tend to analyze based on intention-to-treat, and appropriate
causal inference methods are important to handle biases that
may result from this problem.69
Emergent Logistics in Real World
Deployment
The applications of clinical trial evidence are not always
straightforward and AI-driven trials have a unique challenge
of uncovering emergent issues related to new technology.
Screening for diabetic retinopathy using deep convolutional
neural network classification of images was one of the early
examples of deep learning in health that rivaled the perfor-
mance of physicians.8 The model designed by Gulshan and
colleagues at Google Research was trained on high-quality
curated datasets. However, when Google Health prospec-
tively validated this model in Thailand through a human-
centered evaluation in nurse-run screening clinics, they ran
into several unexpected real world issues. The real-world
clinic images would contain artifacts not present in the train-
ing data and thus present triaging problems. Another issue
emerged when the model recommended an ophthalmologist
evaluation, and patients living in rural areas did not have the
means or finances to travel long distances to specialists con-
centrated in urban area.70 Much as how current clinical trials
need to consider generalizability of treatments and patient
eligibility, clinical trials using AI will need to consider emer-
gent issues centering on the human evaluation of AI models.
Conclusion
The past, present, and future of AI in oncology trials is
bright, but there is much work to be done. We have dis-
cussed the groundwork that has−and is−being laid by vari-
ous research groups. Many challenges remain such as
intersystem compatibility, data entry errors, and (not ran-
domly) missing data, which need to be overcome, and we
look forward to seeing these challenges faced in the years
ahead.
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