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Clinical research relies on high-quality patient data, however, obtaining big data sets is costly and
access to existing data is often hindered by privacy and regulatory concerns. Synthetic data
generation holds the promise of effectively bypassing these boundaries allowing for simplified data
accessibility and the prospect of synthetic control cohorts.We employed two differentmethodologies
of generative artificial intelligence –CTAB-GAN+andnormalizing flows (NFlow) – to synthesizepatient
data derived from 1606 patients with acute myeloid leukemia, a heterogeneous hematological
malignancy, that were treated within fourmulticenter clinical trials. Both generativemodels accurately
captured distributions of demographic, laboratory, molecular and cytogenetic variables, as well as
patient outcomes yielding high performance scores regarding fidelity and usability of both synthetic
cohorts (n = 1606 each). Survival analysis demonstrated close resemblance of survival curves
between original and synthetic cohorts. Inter-variable relationships were preserved in univariable
outcome analysis enabling explorative analysis in our synthetic data. Additionally, training sample
privacy is safeguarded mitigating possible patient re-identification, which we quantified using
Hamming distances. We provide not only a proof-of-concept for synthetic data generation in
multimodal clinical data for rare diseases, but also full public access to synthetic data sets to foster
further research.

In the age of big data, the paucity of publicly available medical data sets is
often staggering. Despite extensive data collection efforts, such as The
Cancer Genome Atlas1, the public availability of comprehensive entity-
specific data sets remains largely unsatisfactory. Data sharing is often hin-
dered by concerns of patient privacy, regulatory aspects, and proprietary
interests2. These factors donot only impedeprogress inmedical researchbut
also establish a gatekeeping mechanism that restricts specific research
inquiries to large institutions with access to extensive datasets. Collecting
such data sets is a costly and time-consuming effort and especially later-
phase clinical trials usually take years to complete and require millions in
funding3,4. In particular, this is true for rare diseases, such as acute myeloid
leukemia (AML), which is a genetically heterogenous and highly aggressive
hematological malignancy with so far unsatisfactory patient outcomes

despite recent advances in therapy5. In addition, thedevelopmentof targeted
therapies for defined subgroups leads to an increased need for control
groups6. To gain insights into such burdensome malignant entities with
unmet medical needs, a crowd-sourcing of data to refine risk stratification
efforts and test treatment-relatedhypothesis is essential. Ifmachine learning
methods are to be deployed in such data sets, the size of available diverse
training data is paramount for model robustness. Generative models,
especially generative adversarial neural networks (GANs)7, have exhibited
remarkable capabilities in image generation8, but can also effectively gen-
erate synthetic non-image data. The unique properties of generative artifi-
cial intelligence (AI) yield the prospect of synthesizing data based on real
patients, which can be distributed at will since, ideally, synthetic data only
mimics real patient data alleviating concerns of privacy. In this scenario, the
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synthetic data itself should preserve the biological characteristics of the
disease under investigation to make inferences to real-world applications
possible. At the same time, synthetic data should safeguard privacy of the
underlying training cohort.

In this study,we employ two state-of-the-art technologies of generative
modeling on a large trainingdata set of four pooledmulticenter clinical trials
including AML patients with comprehensive clinical and genetic informa-
tion. We investigate how closely the synthetic data resembles the real trial
data aligning baseline characteristics and patient outcome. Further, we
measure privacy conservation in the synthetic data. Additionally, we pro-
vide both final fully synthetic data sets comprising 1606 AML patients each
in a publicly accessible repository to foster further research into this
devastating disease.

Results
Synthetic cohorts generated by CTAB-GAN+ and NFlow score
highly in fidelity metrics
We generated equally sized data sets of n = 1606 synthetic patients with
each generativemodel to compare patient variables to the original cohort.
The fidelity of synthetic data was assessed with three previously proposed
performance metrics scaled from 0 (inadequate representation) to 1
(optimal representation). First, the distribution of each individual variable
was compared between original and synthetic data again yielding high
scores for both models (Regularized Support Coverage9 for CTAB-GAN
+: 0.95 and NFlow: 0.97). Second, continuous numerical variables were
assessed by comparing mean, median, and standard deviation between
original and synthetic data per variable (Basic Statistical Measure9)
showing high scores for both CTAB-GAN+ (0.91) and NFlow (0.92).
Third, regarding accurate representations of inter-variable correlations,
CTAB-GAN+ and NFlow achieved a Log-Transformed Correlation
Score9 of 0.75 and 0.74, respectively. An overview of performance metrics

is provided in Supplementary Table 1 (usability; survival metrics are
reported with survival analysis).

Synthetic clinical and genetic patient characteristics closely
mimic those of real patients
Baseline patient characteristics compared between real and synthetic
patients are shown in Table 1. The distribution of patients from different
trials between training and test set did not differ significantly (Supple-
mentary Table 2). It has to be noted that given the large sample sizes (three
groups with n = 1606 each), even small effect sizes yield statistically sig-
nificant differences. For instance, median age in the original cohort was 56
years, while synthetic patients generated by CTAB-GAN+ had a slightly
younger median age of 53 years (p = 0.0001), whereas NFlow-generated
patients had a slightly older median age of 58 years (p = 0.039). Sex dis-
tribution did not differ between NFlow and the original cohort, while
CTAB-GAN+ generated more males than females (NFLOW: 56.2% vs.
43.8%; original: 52.2%vs. 47.8%;p = 0.023). The ratesof de novo, secondary,
and therapy-associated AML did not differ significantly for CTAB-GAN+
generated patients, while NFlow generated fewer de novo and more
therapy-associated AML patients compared to the original cohort. Hemo-
globin levels and platelet count did not differ significantly between the
original and the synthetic cohorts, while synthetic patients generated by
CTAB-GAN+ showed a significantly highermedian white blood cell count
than the original cohort. Notably, the way outliers were handled regarding
continuous variables (age, WBC, PLT, Hb) was different for both models
compared to theoriginal data. In theoriginal data set, thenumberofpatients
with outliers at the upper end of the spectrum was thinned out as more
extreme values were less likely. This behavior was better represented by
NFlow than by CTAB-GAN+ (Supplementary Fig. 1). Especially forWBC,
CTAB-GAN+ seemed to even out the outliers across the upper distribution
range resulting in a statistically significant difference compared to the

Table 1 | Distribution of baseline characteristics between the original and synthetic cohort

Clinical data original
cohort

CTAB-
GAN+

p NFlow p

Number of
patients

1606 1606 1606

Age, med-
ian (IQR)

56 (44–65) 53 (42–64) 0.0001 58 (47–66) 0.039

Sex, n (%) 0.023 0.672

Female 768 (47.8) 703 (43.8) 781 (48.6)

Male 838 (52.2) 903 (56.2) 825 (51.4)

AML status, n (%)

de novo 1339 (83.4) 1339 (83.4) 1.000 1250 (77.8) 0.041

Secondary 195 (12.1) 193 (12.0) 0.914 200 (12.5) 0.554

Therapy-
associated

54 (3.4) 57 (3.5) 0.847 83 (5.2) 0.007

Extramedullary
disease, n (%)

224 (13.9) 228 (14.2) 0.409 279 (17.4) 0.003

ELN2022, n (%)

Favorable 515 (32.1) – –

Intermediate 449 (28.0) – –

Adverse 624 (38.9) - –

Laboratory values

WBC, median
(IQR) in GPt/l

19.5
(4.5–53.4)

27.0
(8.3–69.6)

<0.0001 14.4
(5.8–55.3)

0.832

Hb, median (IQR)
in mmol/l

5.9 (5.0–8.6) 5.8 (5.0–7.0) 0.949 5.9 (5.2–6.8) 0.988

Plt, median (IQR)
in GPt/l

50.0
(27.0–94.0)

49.7
(31.0–93.4)

0.073 48.0
(26.2–94.5)

0.405

Boldface indicates statistical significance (p < 0.05). p-values are calculated using two-sample comparisons between each of the synthetic cohorts and the baseline cohort for reference.Hb hemoglobin,
IQR interquartile range; n number, Plt platelet count,WBC white blood cell count.
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original cohort (Table 1) whereas outliers for Nflow were more in line with
the original cohort. Interestingly, at the same time CTAB-GAN+ com-
pletely cuts off outliers roughly below the 600 GPt/l mark for PLT.

Fifty molecular and cytogenetic alterations were included in gen-
erating synthetic patients. Figure 1 displays the distribution of these
alterations across the original and synthetic cohorts (absolute numbers
and p-values are provided in Supplementary Table 3). These alterations

encompass genes that code for epigenetic regulators (Fig. 1a), the
cohesin complex (Fig. 1b), transcription factors (Fig. 1c), TP53 and
Nucleophosmin 1 (Fig. 1d), signaling factors (Fig. 1e), components of the
spliceosome (Fig. 1f), and cytogenetic aberrations with established
impact on patient outcome (Fig. 1g). Overall, the rates of alterations in
both synthetic cohorts were in a plausible range with a few deviations
from the original cohort of high statistical significance, such as

Fig. 1 | Distribution of molecular and cytogenetic
alterations between real and synthetic patients. 50
molecular genetic and cytogenetic alterations were
included in generative modeling. Molecular genetics
were originally assessed by next-generation
sequencing using a targetedmyeloid panel including
genes that encode for epigenetic regulators (a, dark
blue), the cohesion complex (b, orange), transcrip-
tion factors (c, red), NPM1 and TP53 (d, light blue),
signaling factors (e, purple), and the spliceosome
(f, green). Cytogenetic aberrations (g, black) were
selected based on previously demonstrated impact
on patient outcomes. Distributions for all variables
are denoted as percentages of each respective cohort.
Overall, both synthetic cohorts well represented the
distribution of alterations in the original cohort with
only slight deviations denoted by highly statistically
significant (p < 0.001) differences in BCORL1,
DNMT3A, PHF6, and ZRSR2 for NFlow, as well as
CUX1 and GATA2 for CTAB-GAN+ .
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NFlow-generated frequencies ofBCORL1, DNMT3A, PHF6, andZRSR2,
as well as CTAB-GAN+-generated frequencies of CUX1 and GATA2
while the remainder of alterations showed only negligible differences.
Aside from the frequency per individual alteration, the co-occurrences
of alterations play an important role in disease biology, which should be
also captured in high-quality synthetic data. Figure 2 shows the relative
differences between the original cohort and CTAB-GAN+ (Fig. 2a) and

NFlow (Fig. 2b) regarding co-occurring mutations. We found high
congruencies for co-occurrences compared to the original cohort, while
deviations were commonly found in alterations that had a low frequency
in the original cohort. Reducing the degree of these discrepancies likely
requires the generation of combinatorial features at the training stage
which in turn vastly expands the feature space and destabilizes model
training given the limited number of training samples10.

Fig. 2 |Heatmaps for relative differences of genetic
and clinical associations. The differences in co-
occurrences of genetic alterations as well as clinical
variables are plotted. Relative increases (red) or
decreases (blue) are displayed on a scale from
−100% to+100%. The overlap between the original
cohort andCTAB-GAN+ (a), as well as original and
NFlow (b) showed high congruency. Increases or
decreases in co-occurring genetic alterations were
commonly found to affect alterations with low fre-
quency in the original cohort.
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Synthetic cohorts match real patients in outcome and survival
analysis
Duringmodel deployment,we comparedwhether optimizing for EFS orOS
yielded better results.We found that using EFS directly during optimization
led to inferior fidelity in the synthetic data. Hence, EFS had to be modeled
indirectly to ensure a robust relation between both time-to-event variables.
This effect can be seen as arising from the complex interplay betweenoverall
survival (OS) and event-free survival (EFS) within the generative networks,
which appear to struggle in accurately representing two time-to-event
variables at the same time.Median follow-up for the original cohortwas 89.5
months (95%-CI: 85.5–95.4). The synthetic cohorts had amedian follow-up
of 91.3 months (CTAB-GAN+, 95%-CI: 84.8-98.0) and 74.3 months
(NFlow, 95%-CI: 70.9–77.4). Tables 2, 3 show a detailed comparison of
patient outcome between the original and both synthetic cohorts. For CR
rates, we found no significant differences between the original (70.7%) and
both synthetic cohorts (CTAB-GAN+: 73.7%; NFlow: 69.1%).Median EFS
in the original cohort was 7.2 months while both CTAB-GAN+ with
12.8 months and NFlow with 9.0 months deviated with high significance.
This effect can arguably be attributed to bothCR rate andOSbeing included
in hyperparameter tuning, while EFS was exempt from hyperparameter
tuning. Kaplan-Meier analysis nevertheless showed a plausible representa-
tion of the survival curves for both synthetic cohorts regarding EFS (Fig. 3a).
MedianOSfor theoriginal cohortwas 17.5monthswhile theCTAB-GAN+
cohort had a median OS of 19.5 months (p < 0.0001) and NFlow of
16.2 months (p = 0.055). Kaplan-Meier analysis (Fig. 3b) showed similar
behavior of survival curves as for EFS. This was also evident with regard to
usability metrics for synthetic survival data introduced by Norcliffe et al.11:
We found both CTAB-GAN+ and NFlow to score high in our test set with
normalized performance results (+1 is optimal representation, 0 is inade-
quate representation, Supplementary Table 1). First, we evaluated perfor-
mance metrics for OS. Kaplan-Meier-Divergence, i.e. the degree to which
survival curves of synthetic and real data differ, was low for both synthetic
data sets (CTAB-GAN+: 0.97, NFlow: 0.98). Neither model showed overt
optimism or overt pessimism in representing survival data (CTAB-GAN+:
0.98, NFlow: 0.99). Short-sightedness, i.e. failure to predict beyond a certain
time point, was also low for both models, however slightly favoring CTAB-
GAN+ over NFlow (CTAB-GAN+: 0.99, NFlow: 0.93) arguably corre-
sponding to the censoring tendency of NFlow. For EFS, survival

performance metrics were similar to OS (Supplementary Table 1) with a
Kaplan-Meier-Divergence score of 0.94 and 0.96 for CTAB-GAN+ and
NFlow, respectively. For EFS, both models showed low short sightedness
(CTAB-GAN+: 0.98,NFlow: 0.88) and lowoptimism(CTAB-GAN+: 0.96,
NFlow: 0.97). Still, visually the survival curve for EFS for both models was
irregular as towards the end of the follow-up period there was still no
stabilization of survival (Fig. 3). Notably, the number of patients with very
long EFS or OS, i.e. over five years, was better matched by NFlow than
CTAB-GAN+ compared to the original cohort (Supplementary Table 4).

Synthetic data captures risk associations of individual variables
for explorative analyses
In order to be useful for explorative analyses, synthetic data needs to reca-
pitulate risk associations of individual variables. The ELN2022 recommen-
dations represent one of the most widely used guidelines for risk
stratification12. Hence, previously established markers of favorable (normal
karyotype, t(8;21), inv(16) or t(16;16) mutations of NPM1, CEBPA-bZIP in
frame mutations), intermediate risk (FLT3-ITD, t(9;11)), or adverse risk
(complex karyotype, −5, del(5q), −7, −17, mutations of TP53, RUNX1,
ASXL1), and age were evaluated using univariable analyses per cohort for
their impact on achievement of CR, EFS, andOS. All effects for achievement
of CR, EFS, and OS showed the same directionality – favorable affects in the
original cohort were also favorable in synthetic cohorts and vice versa – and
significance – effects that were significant in the original cohort were also
significant in synthetic cohorts and vice versa (except for del(5q) being sig-
nificantly associated with failure to achieve CR in the original cohort while
this effect turned out to be non-significant in the NFlow-generated cohort).
Importantly, no inverse effects – a variable that would be favorable in the
original cohort would be adverse in a synthetic cohort or vice versa – were
observed. Detailed outcomes per variable are reported for CR (Supplemen-
taryTable 5),EFS (SupplementaryTable6), andOS(SupplementaryTable7).

Synthetically generated cohorts safeguard real patient data and
prohibit re-identification
Privacy conservationwasmeasured by: (i) number of exactmatches between
original and synthetic cohorts, (ii) a privacy leakage coefficient based on
Hamming distance, and (iii) absolute Hamming distances showing the
number of variables to be altered per synthetic patient tomatch a real patient.
First, for both synthetic data sets the number of exact matches compared to
the original cohort was zero. Second, the average minimum distances com-
paredbetweendatapoints in training and test setswere similar for the original
cohort, as well as synthetic data from both CTAB-GAN+ andNFlow (Table
3). The privacy leakage coefficient – the quotient of Hamming distances

Table 2 | Comparison of patient outcomes between the origi-
nal and synthetic cohort

original cohort CTAB-GAN+ NFlow

CR after induction
therapy, n (%)

1135 (70.7) 1184 (73.7) 1110 (69.1)

OR 2.41 2.81 2.24

[95%-CI] [2.16–2.68] [2.51–3.14] [2.01–2.49]

p-value 0.059 0.356

Median EFS,
months (IQR)

7.2 (6.5–8.0) 12.8 (11.8–14.1) 9.0 (8.3–9.7)

HR 1.36 0.74 0.87

[95%-CI] [1.25–1.47] [0.68–0.80] [0.80–0.94]

p-value <0.0001 <0.0001

Median OS,
months (IQR)

17.5 (15.7–19.2) 19.5 (15.7–19.2) 16.2 (15.7–19.2)

HR 1.14 0.88 1.00

[95%-CI] [1.04–1.24] [0.81–0.96] [0.92–1.09]

p-value <0.0001 0.055

Logistic regression and Cox proportional hazard models were used to obtain odds ratios (OR) for
achievement of complete remission (CR) andhazard ratio (HR)with corresponding 95%-confidence
intervals (95%-CI). Boldface indicates statistical significance (p < 0.05). p-values are calculated
using two-sample comparisons between each of the synthetic cohorts and the original cohort for
reference. n number.

Table 3 | Hamming distances for privacy conservation

CTAB-GAN+ NFlow Original cohort

Absolute Hamming distances

Average min. dis-
tance train

8.7034 9.3474 8.2524

Average min. dis-
tance test

8.8587 9.4117 8.2224

Median dis-
tance train

9 9 8

Median distance test 9 9 8

Relative Hamming distances

privacy leakage
coefficient

0.0178 0.0069

Hamming distances were used to measure the distance between two points within and between
equally sized subsets of training (four sets of 20%) and test data (20%). The median distance
represents the number of variables that have to be altered (andmatched exactly) to fit a real patient.
A threshold for the privacy leakage coefficient of 0.05 for relative distances was set where values
above 0.05 signal potential privacy breaches. Both synthetic data sets fell well below the 0.05
threshold signaling larger distances between synthetic and training data, which make a re-
identification of training set patients unlikely.
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between synthetic to test divided by synthetic to training data where small
values (<0.05) indicate a small difference between the distances of synthetic
data to training and test data, and therefore, indicate no privacy breach –was
very low for both CTAB-GAN+ and NFlow (Table 3). This signals a low
likelihood of re-identification for both synthetic datasets. Third, the median
number of variables thatwould have to be altered to assign a synthetic patient
to a training set patient was nine for both CTAB-GAN+ and NFlow.

Discussion
Synthetic data provide an attractive solution to circumvent issues in current
standards of data collection and sharing. These issues encompass first and
foremost the time- and cost-intensive data collection process that usually
involves enrollment of patients in prospective clinical trials presenting ever-
increasing costs bothregarding funding and timeuntil completion, aswell as
ethical concerns inherent in clinical research with human subjects3,4. The

Fig. 3 | Comparison of survival curves between
original and synthetic cohorts. Event-free survival
(EFS) deviated significantly from the original cohort
for both synthetic cohorts (a). For the NFlow-
generated cohort, there was no significant deviation
from the original distribution for overall survival
(OS), while the CTAB-GAN+ -generated cohort
again differed significantly (b). Interestingly, while
the survival curve for CTAB-GAN+ displays a
plausible curve up until ten years of follow-up, the
curve shows no stabilization of survival rates in the
end as the original cohort does. Contrastingly, the
survival curve for NFlow shows an overall plausible
course, however, NFlow tends to overtly censor
patients after two years of follow-up.

Numbers at risk

real 1606 454 292 238 161 68 27 0

CTAB+ 1606 590 407 313 210 97 23 0

NFlow 1606 418 315 227 84 20 1 0

Event-free survival

Months
 lavivru

S
ytilibaborp

0 144

0.
00

0.
25

0.
50

0.
75

1.
00

logrank p-value(original vs. CTAB-GAN+) < 0.0001

a

24 48 72 96 120 168 192

Overall survival

Months

 lavivru
S

ytilibaborp

0.
00

0.
25

0.
50

0.
75

1.
00

b

0 14424 48 72 96 120 168 192

logrank p-value(original vs. NFlow)           = 0.0005

logrank p-value(original vs. CTAB-GAN+) = 0.0030

logrank p-value(original vs. NFlow)           = 0.9560

Numbers at risk

real 1606 671 398 324 217 96 30 0

CTAB+ 1606 699 467 364 257 128 41 0

NFlow 1606 590 407 285 116 34 4 0

original cohort

synthetic (CTAB-GAN+)

synthetic (NFlow)

original cohort

synthetic (CTAB-GAN+)

synthetic (NFlow)

https://doi.org/10.1038/s41746-024-01076-x Article

npj Digital Medicine |            (2024) 7:76 6



prospect of using synthetic data as a kind of control group in prospective
trials while effectively alleviating the need to enroll a larger number of
patients and cutting costs bears the question of how closely such synthetic
control arms match real-world cohorts. We used two generative AI tech-
nologies, a state-of-the-art GAN, CTAB-GAN+ , andNFlow, tomimic the
distribution of patient variables from four different previously conducted
prospective multicenter trials including a total of 1606 patients with AML.
Both models demonstrated high performance in previously established
evaluation metrics that assess fidelity and usability of synthetic tabular
data9,11. Generative models typically aim at reconstructing a given dis-
tribution. Nevertheless, changes in the distribution across the follow-up
period in time-to-event data may, however, not be adequately captured
using currently available models for tabular data generation. Hence, model
architectures should be designed to also handle such distributional shifts
over the follow-up period and improved metrics are needed for synthetic
time-to-event analysis. This is especially pertinent as current synthetic
survival metrics may not fully capture the nuances of long-term event
prediction in survival analysis, particularly in the tail end of the survival
curves. Such discrepancies underscore the need for additional or refined
metrics that can better assess the accuracy and reliability of synthetic data in
reflecting the prolonged survival trends. Further, multiple time-to-event
endpoints may be of relevance in the context of clinical research. Model
architectures need to be developed to simultaneously optimize for more
than one time-to-event target variable. Currently, the design of synthetic
cohorts may rely on selecting one target variable of interest to optimize for
(in our caseOS) and evaluate results for other outcomes. The comparison of
distributions per variable between original and real data further showed
close resemblances.Notably, even for statistically significantdeviations from
the original cohort, differences in effect sizes (e.g. age difference, difference
in rates of occurrence for genetic alterations etc.) were often small. Inherent
to hypothesis testing with such large sample sizes, even clinically irrelevant
deviations can yield statistically significant differences. Importantly, inter-
variable relationships were conserved in synthetic data: In univariable
analyses both effect direction and statistical significance was well captured
by both generative models effectively enabling explorative investigations in
such data sets. Data sets of lower dimensionalities and comparable or even
larger sample sizes, i.e. with a smaller feature space (fewer patient variables),
may also allow for combinatorial variables to be generated and evaluated.

Once real data is obtained, privacy concerns often inhibit public access
and thus impededata sharing and third-party hypothesis testing. Frequently
used practices range from de-identifying or anonymizing data to more
advanced computational approaches. De-identification or anonymization
(e.g. removingnames andbirth dates), aswell as adding artificial noise to the
original data have recently been proven to be unsafe in terms of guarding
privacy as reidentification attacks can successfully unveil patients’
identity13–15. Computational advances in both federated16 and swarm
learning17 where machine learning models are trained across multiple
locations and only either models or weights are shared rather than the data
itself provide a viable alternative. Nevertheless, these technologies are vul-
nerable to data reconstructions, e.g. via data leakage from model
gradients18–20. Inherent to synthetic data generation in terms of privacy
safeguards is a trade-off between usability and privacy where an increase in
each negatively affects the other21. Ideally, synthetic data should not be re-
identifiable but at the same time closely match the original distributions.
Zero exact matches were observed in our synthetic cohorts. Additionally,
Hammingdistances showed that reconstructionof original training samples
is highly unlikely given the number of variables per synthetic patient that
would have to be altered in order to match a training cohort patient.

The generation of synthetic data is, as all machine learningmodels are,
fundamentally limited by the data that themodel is trained on. This implies
that external users should be aware of the properties of the training data that
went into the generation of a synthetic data set in order to either select the
right data set for their research question or vice versa, adapt the research
question to the available data. It is therefore important to note, that patients
in our trials have all been treatedwith intensive anthracycline-based therapy

and largely stem from a Middle-European ethnic background. Hence, our
generated synthetic AML data sets may not fully capture features of other
populations let alone other treatment modalities, such as less intensive
therapyor targeted agents. Treatment protocols in the trials used to generate
synthetic patients in this study are all intensive anthracycline-based che-
motherapy regimens. A further stratification of cohorts into individual
treatment arms of the respective studies or according to transplantation
status and a generation of synthetic patients based thereon was limited by
the individual sample sizes of investigational and control arms as neural
networks commonly require large data sets for robust training. One of the
trials used for data generation, SORAML22, added sorafenib to the investi-
gational cohort of which 110 patients have been included inmodel training.
Notably, sorafenib did not affect CR rate orOS in the original study22.While
sample subdivision likely represents aminor issue in the context of intensive
chemotherapy-based regimens, it is acknowledged that for targeted agents,
individual cohort generation is essential to adequately capture different
mechanisms of action. To obtain large data sets for individual targeted
agents, international multicenter collaboration will likely be necessary. The
incorporation of these modalities will be addressed in future works. Since
ML models thrive on large and diverse data sets, synthetic data generation
from medical records is caught in a paradoxical loop: Available data is
sparse, synthetic data can potentially accommodate for sparse available real
data, synthetic data requires large and diverse sets of real data to mean-
ingfully represent the population23. Therefore, the generation of synthetic
data is likely more robust, if training data from large multicenter cohorts is
used. An additional use case representing an essential data source can be
devoted to real-world data. Differences in patient selection for clinical trials
and patients in real-world settings may impede the generalizability of
clinical trial findings to everyday practice24. Ideally, synthetic data genera-
tion would therefore also include patients from real-world settings. Still, the
availability of patient features (such as comprehensive genetic information)
may not be given in real-world data as it is in clinical trials. A homo-
genization of synthetic data from both sources at the same time may
therefore be limited to patient features available from real-world settings.
Hence, generation of distinct trial and real-world synthetic cohorts may be
preferable for comparative analyses, i.e. comparing a real investigational
arm to both a synthetic trial-based and synthetic real-world-based control.

Nonetheless, the availability of synthetic data promises a democrati-
zation of clinical research. In similar efforts regarding synthetic cancer
patient data, Azizi et al.25 and D’Amico et al.26 explored synthetic data
generation in cancer. Azizi et al.25 used data from a previously conducted
clinical trial in colorectal cancer to generate synthetic data using condi-
tional decision trees. Focusing on myelodysplastic neoplasms (MDS),
D’Amico et al.26 used a conditional Wasserstein tabular GAN to generate
synthetic MDS patients from the GenoMed4All database. Both groups
conclude the feasibility of either method to generate synthetic data that
closely resemble the original data distributions and provide access to their
synthetic data. Publicly available synthetic data sets have increasingly
demonstrated their value in advancing public health, for example, syn-
thetic data from the UKprimary care to evaluatemachine learningmodels
in healthcare27, model US-wide diseases of high morbidity28, construct
databases for healthcare costmodeling inMedicare andMedicaid29, model
mortality during theCovid19-pandemic30, or to assess community-specific
exposure and risk31 for policy making. The advent of synthetic data in
healthcare requires community-accepted guidelines32 topromote fairness33

and safety34. Different approaches to synthetic data generation and
applications have been recently reviewed by Gonzales et al.35, Hernandez
et al.36, Murtaza et al.37, or Jacobs et al38. These studies may alleviate a
common gatekeeping mechanism of costly data collection efforts that are
often restricted to large well-funded medical centers. Further, this also
extends to cross-domain applications involving medical data, e.g. the
training of a ML model by a third party that requires large sets of
training data.

We here provide a large data set of a rare malignant entity with
comprehensive patient-level information on clinical, laboratory,
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cytogenetic,molecular, andoutcomevariableswith a variety of potential use
cases (Fig. 4). First, by sharing this datasetwith the scientific community, we
aim to foster research efforts that require large such large datasets, for
example, exploratory analysis to identify variable-specific behavior (e.g.
association of a certain molecular variable with patient outcomes), to train,
test, andvalidate externalmachine learningmodels (e.g. classifiers topredict
patient outcomes), or to augment existing cohorts. The latter may at some
point include the augmentation of clinical trial control cohorts, however,
the limitations noted above have to be considered and communicated with
the responsible ethics committees. Future work in evaluating the aug-
mentation or substitution of control cohorts of large prospective clinical
trials with synthetic data is needed to establish synthetic benchmark sets for
widespread usage. The advent of synthetic data in clinical trial settings
requires additional stringent regulatory oversight39. The current lack of
regulatory guidance not only disables potential uses of synthetic data in
clinical trials, but also enables regulatory blind spots for predatory actors to
misuse synthetic healthcare data since current legal frameworks of data
protection such as theGeneral Data Protection Regulation (GDPR) and the
Health Insurance Portability and Accountability Act (HIPAA) fall short in
addressing potential issues regarding synthetic data39,40. Given the pacewith
which AI currently develops, there is a widening gap between how fast
technologies are devised and how much later regulatory agencies set legal
boundaries for the technologies’ safe implementation41. This likely requires
a multifaceted regulatory approach involving anticipation of technological

developments and proactive regulation of potential use cases41. Moreover,
regulatory agencies will need to foster active dialogue between all involved
stakeholders in synthetic healthcare data generation including first and
foremost patients and patient advocacy groups, but also healthcare provi-
ders, legislators, legal experts, researchers in academia and industry, as well
as software developers and engineers building generative models.

In summary, we demonstrate the feasibility of two different technol-
ogies of generative AI to create synthetic clinical trial data that both closely
mimic disease biology and clinical behavior, as well as conserve the privacy
of patients in the training cohort. Generating such large synthetic data sets
based on multicenter clinical trial training data holds the promise of
enabling a new kind of clinical research improving upon data accessibility,
while ameliorating current hindrances in data sharing.

Methods
Patient data
Multimodal clinical, laboratory, and genetic data (Supplementary Table 8)
were obtained from 1606 patients with non-M3 AML that were treated
within previously conducted multicentric prospective clinical trials of the
German Study Alliance Leukemia (SAL; AML96 [NCT00180115]42,
AML2003 [NCT00180102]43, AML60+ [NCT00180167]44, and SORAML
[NCT00893373]22). Supplementary Table 9 shows an overview of trial pro-
tocols. Eligibility was determined upon diagnosis of AML, age ≥18 years, and
curative treatment intent. All patients gave their written informed consent

Fig. 4 | Use cases of synthetic data. Privacy con-
servation of synthetic data alleviates concerns of
sharing identifying patient data. This enables sim-
plified data sharing with the broader scientific
community. Large publicly available data sets enable
exploratory analysis of the synthetic data itself or by
using synthetic data to augment proprietary data
sets. This may encompass analyses of the genetic
landscape of AML or the evaluation of the impact of
specific alterations on patient risk. Further, training
machine learning models requires large data sets.
Training on publicly available synthetic data and
validating on real data sets or vice versa, training on
real data and using synthetic data as a benchmarking
set for validation may foster the development of
more robust machine learning models. Lastly, aug-
menting clinical trial cohorts with synthetic data or
even substituting control cohorts with synthetic data
entirely could re-shape prospective clinical trial
designs. This, however, requires external validation
and diligent regulatory oversight prior to
implementation.
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according to the revised Declaration of Helsinki45. All studies were previously
approved by the Institutional Review Board of the Technical University
Dresden. Complete remission (CR), event-free survival (EFS), and overall
survival (OS) were defined according to the revised ELN criteria12. Bioma-
terial was obtained from bone marrow aspirates or peripheral blood prior to
treatment initiation. Sample collection, biobanking, use of samples and
clinical information as well as analysis of individual patient data was carried
out under the auspices of the SAL bioregistry. All these activities carried out
for the purpose of retrospective research such as this study on previously
acquired data were approved by the Institutional Review Board of the
Technical University Dresden (EK 98032010). Next-Generation Sequencing
(NGS) was performed retrospectively using the TruSight Myeloid Sequen-
cing Panel (Illumina, San Diego, CA, USA). Pooled samples were sequenced
paired-end and a 5% variant allele frequency (VAF) mutation calling cut-off
was used with human genome build HG19 as a reference as previously
described in detail46. Additionally, high resolution fragment analysis for
FLT3-ITD47, NPM148, and CEBPA49 was performed as described previously.
For cytogenetics, standard techniques for chromosome banding and
fluorescence-in-situ-hybridization (FISH) were used.

Generative models
In our study, we used two state-of-the-art generative models exhibiting two
fundamentally different concepts of data generation:

i) CTAB-GAN+ 50 builds upon the Generative Adversarial Network
(GAN)51 architecture, consisting of two interlinked neural networks - the
generator and the discriminator. These are jointly trained in an adversarial
manner. The generator’s goal is to produce synthetic data that appears
realistic, starting from random noise. In parallel, the discriminator seeks to
differentiate between real and synthetic samples created by the generator.
The training continues until the discriminator is no longer able to reliably
distinguish real data from synthetic, indicating that the generator has suc-
cessfully approximated the distribution of the real data.

ii) Normalizing Flows (NFlow)52 presents an alternative approach for
synthesizing data from complex distributions. This comprises a sequence of
invertible transformations, starting from a simple base distribution. Each
transformation, or ‘flow’, gradually modifies this base distribution into a
more complex one that better mirrors the actual data. Importantly, these
transformations are stackable, meaning they can be applied successively to
incrementally increase the complexity of the modeled distribution. All
parameters defining these flows are learned directly from the data, allowing
the model to accurately capture the underlying data distribution. Note, that
we used a modification of NFlow for survival data provided by the
Synthcity53 software framework.

No imputation of missing data was performed in the original data set,
thus both final synthetic data sets also contain missing data to adequately
represent real-world conditions. For model training, missingness was deno-
ted as an additional state per variable (for example: 1 = present, 0 = absent,
na =missing). Hence, for binary features a trinarymodel output was possible
(0, 1, na). Supplementary Table 10 denotes the number of missing values.
Hyperparameter tuning was performed using the Optuna framework
allowingboth generativemodels to capture the best possible representationof
the original data. During the development process, we initially modeled EFS
directly but observed unrealistic time-to-event data where EFS sometimes
surpassed OS. To address this, we shifted to an indirect approach, modeling
the difference between OS and EFS instead of EFS directly. Subsequently,
hyperparameterswere tuned forCR,OS, and the difference betweenEFS and
OS. This led to a more robust and consistent representation of both OS and
EFS simultaneously without the logical flaws (EFS >OS) that we saw before.

Evaluation of synthetic data performance
To assess the fidelity und usability of synthetic data, previously proposed
evaluationmetricswere used to provide a comprehensive overviewofmodel
performance. In particular, Basic Statistical Measure, Regularized Support
Coverage, and Log-transformedCorrelation Scorewere used to evaluate the
fidelity of the data in general via our implementation based on the

descriptions by Chundawat et al.9. The second set of metrics – Kaplan-
Meier-Divergence, Optimism and Short-Sightedness - was previously
introduced by Norcliffe et al.11 for synthetic survival data. NFlow was
implemented in Synthcity53 where the time-to-event variable of interest was
set to OS. For improved comparability, performance metrics were nor-
malized on a scale from 0 (inadequate representation of original data) to 1
(optimal representation). An overview of the underlying methodologies of
these metrics is provided in Supplementary Table 11. For detailed infor-
mation, we refer the interested reader to the original publications9,11.

Assessment of privacy conservation
To assess potential privacy implications of synthetic data, we customized the
method proposed by Platzer and Reutterer54 to accommodate for smaller
sample sizes. We partitioned the original training data (80% of total) into
four subsets, matching the size of the test dataset (20%) for balanced com-
parisons (Supplementary Fig. 2). Calculations were performed using Ham-
ming distance55 for categorical features. Numerical variables were binned
(n= 10 bins each) and thereby categorized to enable Hamming distance
calculations. Given the nature of the Hamming distance metric, the average
minimum distance effectively denotes the number of variables that would
need to be altered for a synthetic patient to match a real patient. We com-
pared the average distances of the synthetic data to the training (syn→ train)
and test sets (syn→ test). The relationship between both can be expressed as
a coefficient for each synthetic data set compared to training and test set:

privacy leakage coefficient ¼ syn ! test
syn ! train

� 1

By analyzing whether the synthetic data is closer to the training set
compared to the test set, we can assess whether the synthetic data is overly
representative of the training data, thereby posing potential privacy con-
cerns. If the average distances from the synthetic data to the training and test
data are equally small, the privacy leakage coefficient will also be small. The
lower the privacy leakage coefficient, the lower the likelihood of re-
identification for patients in the training set. We assumed that values above
0.05 signal potential privacy breaches, as they suggest the synthetic data is
substantially closer to the training set than to the test set. Conversely, values
below 0.05 denote a favorable privacy safeguard, signaling similar distances
between the training and test sets. Additionally, the number of exact subject
matches between the synthetic and original cohorts was determined.

Statistical analysis
Pairwise analyses were conducted between the original and both synthetic
data sets. Normality was assessed using the Shapiro-Wilk test. If the
assumption of normality was met, continuous variables between two
samples were analyzed using the two-sided unpaired t-test. If the assump-
tion of normality was violated, continuous variables between two samples
were analyzed using the Wilcoxon rank sum (syn. Mann-Whitney) test.
Fisher’s exact test was used to compare categorical variables. Univariate
analyses for binary outcomes (CR rate) were carried out via logistic
regression to obtain odds ratios (OR) and 95% confidence intervals (95%-
CI). Time-to-event analyses (EFS, OS) were carried out using Cox
proportional hazard models to obtain hazard ratios (HR) and 95%-CI.
Kaplan-Meier analyses were performed for time-to-event data (EFS, OS)
and corresponding log-rank tests are reported. Median follow-up time was
calculated using the reverse Kaplan-Meier method56. All tests were carried
out as two-sided tests. Statistical significance was determined using a sig-
nificance level α of 0.05. Statistical analysis was performed using STATABE
18.0 (Stata Corp, College Station, TX, USA).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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Data availability
The synthetic data57 sets generated and analyzed for the purpose of this
study are publicly available at https://zenodo.org/record/8334265 or via
https://doi.org/10.5281/zenodo.8334265.

Code availability
The underlying code generated for the purpose of this study is publicly
available at https://github.com/waldemar93/synthetic_data_pipeline.
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