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Abstract

Artificial intelligence (AI) represents a rapidly developing field. Its use can improve

diagnosis and therapy in many areas of medicine. Despite this enormous progress, many

physicians perceive it as a black box and are skeptical about it. This review will present

the basics of machine learning. Different classifications of artificial intelligence, such as

supervised versus unsupervised and discriminative versus generative AI, are given.

Analogies to human intelligence are discussed as far as algorithms are oriented toward

it. In the second step, the most common models like random forest, k‐means clustering,

convolutional neural network, and transformers will be presented in a way that the

underlying idea can be understood. Corresponding medical applications in cardiovascu-

lar medicine will be named for all models, respectively. The overview is intended to

show that the term artificial intelligence covers a wide range of different concepts. It

should help physicians understand the principles of AI to make up one's minds about its

application in cardiology. It should also enable them to evaluate results obtained with

AI's help critically.
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1 | INTRODUCTION

In recent years, there has been hype regarding artificial intelligence (AI)

in medicine. Although there are various definitions of human

intelligence, it can roughly be described as the ability to analyze

complex situations and act appropriately on them. In analogy, AI can be

seen as a method to achieve the same behavior and goals by artificial

means, predominantly computer algorithms. The term “artificial intelli-

gence” was initially coined by John McCarthy, who referred to it as “a

system which is to evolve intelligence of human order.”1

The significant advances in AI are accompanied by mystification,

especially in the lay press. This has led to terms like “black box AI”

since humans do not intuitively understand results. However, there

are many technical achievements in the modern world that humans

need help understanding at first glance. Many AI models can be

traced back to simple mathematical models. Only the quantity of

operations and data makes it impossible to trace results in detail. On

the other hand, this is also the main reason for the continued growth

of AI applications. The availability of large computing capacities, big

data, and mathematical algorithms allows us to recognize patterns in

a way that was impossible before.

This paper aims to explain the basics of AI. In this context, it will

focus on machine learning (ML). ML is a subcategory of AI. ML is the

capability to make predictions and decisions based on data. AI, on the
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other hand, is an umbrella term that includes further subcategories

like natural language processing (NLP), computer vision (CV), text‐to‐

speech models, and robotics, in addition to ML. Especially a new field

of AI called foundation models, has recently increased strongly in

importance. The term foundation model, coined at Stanford in 2021,

describes AI systems that have been trained with a large amount of

data so that they can attend to different tasks. The models can then

be adapted for specific tasks (fine‐tuning). The most well‐known

foundation models are the large language models (LLMs) GPT‐n

(OpenAI), BERT (Google), LLaMA (Meta AI), and Claude (Anthropic

AI). LLMs embrace transformer architectures, which are mentioned at

the end of the review.

Selected models of ML and their applications based on these

principles will be presented in this review. Supporting Information:

Table S1 gives an overview of the most important algorithms,

examples of their application in cardiology, and the specific problem

they are designed to solve.

It will also be shown that many concepts have been adopted

from brain research. Since many algorithms have only been

developed recently, their medical application is often still at the

experimental or evaluation stage. Many applications have yet to find

their way into routine clinical use.

2 | GENERAL PRINCIPLES OF AI

2.1 | Nonlearning versus learning systems

A categorization of AI into learning and nonlearning algorithms is

introduced to facilitate further understanding. In nonlearning

systems, algorithms react in a predefined way in particular situations.

The system always responds in the same way. It, therefore, does not

learn. Classic chess programs, for example, are programmed this way.

In contrast, more elaborated AI systems use an approach where

the systems learn. In classical computing, an algorithm, usually called

a program, is fed with input data, which are processed by the

program, and consequently, the output is given back to the user.

The simplest example in this context is a pocket calculator. While

executing a mathematical operation, the actual program of the

calculator is not changed, which means that the program is not

learning. This is different from learning AI algorithms. When these

algorithms are fed with data, the algorithms change while processing,

which means that the algorithms learn. The name “ML” refers to this

characteristic. Principally learning systems can be divided into neural

networks that mimic the human brain (deep learning) and alternative

architectures.

2.1.1 | Learning systems mimicking the human brain

Deep learning is a subclass of ML using artificial neural networks

(ANN) inspired by the idea of replicating brain architecture. The

natural brain is composed of neurons that are arranged in layers.

These neurons get inputs through dendrites. When the summed

inputs reach an activation potential, neurons generate an action

potential forwarded through the axon to other neurons in other

layers. In analogy to the neuron, the most basal component of an

ANN is called a node. This node gets input from other nodes. These

inputs are called weights and biases that are adjusted during learning.

A particular node's inputs are summed and fed to a nonlinear

activation function, which calculates an output given to the next

layer. In analogy to the biological brain, ANNs can be composed of

many layers, so they carry the adjective deep. The first layer is also

known as the input layer, and the last is called the output layer. The

layers in‐between are the hidden layers (Figure 1). This architecture is

the backbone of every ANN. Frank Rosenblatt programmed the first

ANN in the 50 s of the last century.2 This basic form is called a

multilayer perceptron or vanilla neural network.

But how does the ANN learn? Let us illustrate this with the

example of supervised learning. The algorithm's task is to classify

images, for example, chest X‐rays showing lung cancer or not. The

process can be divided into two steps: In the first step, the ANN is

trained with labeled data. To explain it simply, the input data are the

pixels of the picture, and the weights are a measure of the magnitude

each pixel contributes to classification. Many data instances

propagate through the network. Propagation in this context means

that the algorithm tries to identify features, pixels in the case of

pictures, that are important for classification. The output of each data

instance is compared with the corresponding label, and an error rate is

calculated. This error rate, also called loss, is the difference between

the predicted value of the network and the correct label, also called

ground truth. This loss is then given back to the algorithm for adjusting

the weights. This process is called backpropagation. The learning

process aims to minimize the difference between the prediction of the

network and the ground truth. Thus, the algorithm is changed during

these repeated data propagations and backpropagations. In a

mathematical sense, learning involves adjusting the weights and

biases. After the learning phase, the trained network can classify

unknown data. To stay with the chest X‐ray example, in the second

step, unknown and unlabeled data are fed to the ANN, and the ANN

gives a probability of whether lung cancer is present (Figure 1).

After establishing an ANN, checking whether an AI system

performs sufficiently in the real world is essential. For this purpose, it

is evaluated how correctly the algorithm classifies a test data set. In

this context, an evaluation matrix comprising, among others,

accuracy, F1‐score, sensitivity, and C‐statistic can be used.

These concepts are not new, but the accumulation of big data

and the computational capability to apply the corresponding

algorithms put scientists in the position to recognize patterns in data

that are not intuitive to the human brain.

2.2 | Supervised versus unsupervised learning

Although learning is not a component of all forms of AI, it can

nevertheless be described as the most crucial technique for
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accomplishing specific tasks. This subfield of AI is called ML. When

ML uses the architecture of a neural network, this is also referred to

as deep learning. Thus, deep learning is a subcategory of ML.

In this context, two kinds of learning are distinguished:

supervised and unsupervised. As explained above, in supervised

learning, the algorithm is first trained with clearly classified data, for

example, pictures of lung cancer or not. The algorithm extracts

features from these data. In the second step, the algorithm classifies

data based on these features.

In contrast, the principal concept of unsupervised learning is

detecting unknown patterns in unlabeled data without human help.

With this concept, there is no distinct learning with labeled data. The

algorithm analyzes the data and detects patterns by itself. This

clustering uses specific mathematical operations like calculating the

Euclidian distance for different center points.

Using this approach, subtypes in a group of patients with an

umbrella diagnosis can be identified. For example, five subtypes of

heart failure could be identified in two population‐based datasets in

the United Kingdom.3

2.3 | Discriminative versus generative AI

Discriminative algorithms divide a data set into groups that share

common properties. Labels are assigned to these groups in the

learning process. For example, an algorithm can learn to “discrimi-

nate” normal X‐rays images from images with malignancy. To achieve

this goal, neural or conventional architecture algorithms can be used.

The generative algorithms are distinguished from the discrimina-

tive ones. Generative AI can generate new and original content like

pictures and text using patterns recognized in existing data. These

algorithms can be used for data augmentation as in many fields only a

limited amount of training data are available.4

3 | SPECIAL AI ALGORITHMS AND THEIR
APPLICATIONS

3.1 | Random forest

3.1.1 | Intuition

A typical example of ML is random forest.5 Unlike the algorithms

presented below, it is not based on a neural network architecture but

can still learn. It is a supervised learning algorithm built on an

ensemble of decision trees, which gives rise to its name. It is one of

the most often used ML algorithms for classification and correlation

tasks.

The building block of the random forest is the decision tree. A

decision tree consists of decision nodes and leave nodes. The

decision nodes are the available parameters or attributes of the data

set. The leave nodes are the classes. The decision nodes split data

according to a statement about these parameters. The statement can

be true or false, and the way could go down to the next decision node

or a leaf node. In each data set, there are many possible splitting

conditions. The ML part in this context is to find the best splitting

parameters with the best cut‐off values to classify the values. The

data set values are taken for an individual decision tree, and different

configurations of decision nodes and cut‐off values are evaluated for

optimal separation (Figure 2). A disadvantage of this algorithm is that

F IGURE 1 The basic architecture of deep neural networks (DNN). The figure shows a very basic DNN. In this example, the purpose of the
network is to assign images to two classifications, N and P. The pixel values of a picture, in the present case a chest X‐ray, are fed into this
network. The input values are multiplied by weights (wx), which are random in the first step. To these values, a bias is added (bx). The sum
of the weights and the biases represent the x‐value of the activation function. Specific activation functions fitting particular problems can be
used. The output of the activation function, the y‐values, is the input of the next layer. These basic steps are repeated for any node of the
network. The network's final output is a probability of whether the picture belongs to the N or P category. This output probability is compared to
the actual value, and a loss is calculated. The following steps aim to optimize weights and biases to minimize the loss or, in other words, minimize
the difference between the prediction and the ground truth. This mathematical operation is called backpropagation.
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decision trees are too adapted to the training data set, called

overfitting. That makes them prone to generalization errors. This is

where the random forest algorithm comes into play.

The principal idea of random forest is to create many of these

decision trees. They are built based on known data. In the first step,

the data are bootstrapped, which means that random instances of the

original data set set are taken with replacement. With this boot-

strapped data, decision trees with randomly selected attributes of the

nodes, randomly selected number of nodes, and random order of

nodes, are created. The advantage of this multitude of trees (this

could well be 100 trees) is the large variety, which makes this

approach very effective for classification. After this “training

process,” an unknown instance can be classified. Each tree gives a

vote to classify a new object based on the corresponding attributes.

The final classification of the “forest” follows the label with the most

votes.

3.1.2 | Clinical application

An exciting field of application is the prediction of disease outcomes

based on predefined parameters. For example, this model has been

successfully applied to predict in‐hospital mortality in heart failure

patients.7

3.2 | K‐means cluster

3.2.1 | Intuition

K‐means cluster is a form of data analysis in which data is assigned to

clusters. The number of clusters is k, which gives this method its

name. The optimal cluster centers are found iteratively. The best

number of clusters can be calculated by the elbow method. For

details of this algorithm, see Figure 3. This principle seems simple at

first glance, but the algorithm also provides excellent results in higher

dimensional datasets with many instances.

3.2.2 | Clinical applications

K‐means cluster is essential in many clinical settings, where different

entities are subsumed under umbrella terms. In this context, cluster

analysis identifies disease subgroups with different pathogenesis and

F IGURE 2 Random forest. This figure shows a decision tree, the building block of the random forest algorithm. We take a small sample (14
passengers, 7 survivors, and 7 nonsurvivors) of the titanic data set.6 An algorithm will be created that predicts whether a passenger will survive
based on the available data. There are two classes (leave nodes): survivor nonsurvivor . There are three decision nodes: sex, age, and
class. The first decision node, sex, leads at the right to a pure node, which means that there are five females who all survived. Thus, no further
splitting is necessary. On the left are nine male passengers; two survived, and seven died. Thus, further splitting is mandatory. In this arm, the
next decision node is age >80 years. There are three male passengers older than 80 years who all died. It is a leave node with no further splitting.
There were six male passengers ≤80 years, two survived, and four died. Another split concerning class membership is done. As you see, there are
three male passengers ≤80 years in the first class, from which two survived, and one died. The leave node, in this case, is not pure. Thus, this
decision tree is not perfect. In a second step, now new passengers can be classified based on this decision tree. When the new passenger runs
into the nonpure leave, majority voting is done.
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clinical outcomes. For example, the cluster identification technique has

been used to identify specific phenotypes in pediatric patients with

dilated cardiomyopathy associated with a bad outcome.8 Another

example is the automated detection of coronary artery disease subgroups

using phenotypic and genetic variables of 1329 patients.9

3.3 | Convolutional neural networks (CNN)

3.3.1 | Intuition

A unique and more sophisticated kind of supervised learning are

CNNs. They are described here in more detail as they are powerful

and widely distributed. The development of CNNs shows how brain

architecture is adapted for computational science.

In the 1960, the two Nobel Price winners, Torsten N. Wiesel, and

David H. Hubel, explored the function of the visual cortex in the optical

cortex of cats. The neuroscientist recognized that certain cells in the

optical cortex fire according to the orientation of objects. This means, for

example, that some cells fire at horizontal lines and others at vertical lines.

Besides these cells recognizing only very basal orientations, they also

postulated cells and networks that recognize complex patterns.10

A CNN operates similarly. Convolution is a mathematical operation

that creates a third function on two other functions. Although CNNs have

many different applications, I would like to explain the principle using the

example of image recognition. A given image is to be classified. To

achieve this goal, the image is compared with different templates, also

called filters or kernels, in computer science. These templates are usually

predefined patterns. The CNN evaluates how high the match is.11 Since a

black‐and‐white image is an array of pixels encoding the intensity of the

grayscale, mathematical operations values can be subjected to these

pixels. Using different filters, simple and more complex features can

be identified in images. To achieve this goal, not a big filter is placed over

the whole picture, but a small filter slides in lines over the big picture. In

this context, the filters can also be viewed as small images. To put it very

vividly, the algorithm looks at whether these tiny images of only a few

pixels (e.g., 8 × 8 pixels) can be found in the big picture. By sliding the filter

over the big picture, we get at every position a number presenting the

degree of match. You get a filtered picture if you line up these numbers at

the corresponding positions. Using several different filters, one image

becomes a stack of filtered images. After performing further operations

like normalization (rectified linear unit—ReLU) and pooling, this filtered

image stack is merged into a fully connected layer. From then on, the

following processes occur as in a usual deep neural network (Figure 4).

3.3.2 | Clinical application

This type of network is particularly valuable in image classification. In

many fields of medicine, images from different disease entities must be

classified. In cardiology, CNNs effectively classify electrocardiograms to

distinguish cavotricuspid isthmus dependence from other atrial tachycar-

dia mechanisms.13 Another clinically important application in cardiology is

the classification of functionally significant coronary stenosis in coronary

CT angiography.14 Although CNNs were initially used in image

recognition, they are also a powerful tool in other fields. This is intuitively

logical since images are only typical data arrays. For example, reliable

classification of heart sounds can be achieved after processing audio

sequences into data resembling image data.15

3.4 | Recurrent neural networks (RNN)

3.4.1 | Intuition

Until now, we have only discussed feedforward neural networks, meaning

that information flows only in one direction. Another subtype of

supervised learning is RNNs. In contrast to feedforward networks, they

have a backward‐directed loop. Layers are connected to the next layer,

which then connects back to the former layer forming a loop. By this

mechanism, sequential data can be processed for prediction. Taking the

timeline as an example of sequential events, statements about the future

are made based on past and current findings. Because of this mode of

operation, RNNs most closely resemble short‐term memory of the frontal

F IGURE 3 K‐means cluster. The algorithm k‐means cluster can be divided into six steps: (1) The number of clusters is defined (in the
present: 3). (2) The cluster centers are randomly selected: black, red, and green (A). (3) The Euclidean distance is calculated for each point to the
three cluster centers. Shown is an example of one point (B). (4) Each point is assigned to the next cluster according to the lowest Euclidean
distance (C). (5) Next, the mean of each cluster is calculated, and the “new” center is located there (D). (6) Steps 3–5 are repeated until no change
in the cluster centers and the optimal center locations are found (E).
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lobe in humans. When a ball is thrown, a human can only make a

meaningful statement about the next position if the former positions are

considered. RNNs make similar sequential predictions.

3.4.2 | Clinical applications

Due to this architecture, they are especially suitable for analyzing

sequential events like electrocardiograms,16 audio data in ausculta-

tion,17 and language processing.18 Other promising fields are the

prediction of in‐hospital cardiac arrest or acute kidney injury in

hospitalized patients. The chronological sequence of laboratory

values and diagnostic results are analyzed in these cases.19,20

3.5 | Self‐supervised representation learning

3.5.1 | Intuition

Supervised learning is dependent on labeling a large amount of data.

However, data labeling is expensive; thus, high‐quality labeled data sets

are limited. Therefore, new concepts have been developed in recent

years. Self‐supervised learning is an algorithmic approach mimicking how

children learn in the first 24 months. During this period, children primarily

learn by observing. While observing, the brain learns to predict the future

based on the past or predict the whole picture by showing only parts of it.

The prediction is then compared with reality, and the neural network in

the brain is continuously refined. A concept of the world is created

through observation.

Putting this in algorithms means that the learning process is

divided into two steps: (1) A proxy task is designed (e.g., a picture is

rotated or divided into parts), and the model is trained on this pretext

task. During this process, the model learns the representational

features of the image.21 (2) The model is trained with very few

labeled data during the downstream task.

3.5.2 | Clinical application

This approach has been successfully applied in medical image

classification.22,23 In cardiology, self‐supervised learning has been

applied for correcting coronary MR angiography reconstruction for

respiratory artifacts.24

3.6 | Reinforcement learning

3.6.1 | Intuition

Reinforcement learning uses the concept of operant conditioning

introduced by Skinner in behavioral science. An agent learns

what action to take based on predefined rules to get later

the highest reward. The agent iteratively makes different

decisions until it finds the optimal policy to achieve this goal. In

other words, the agent learns through trial and error. This

concept can be traced back to the neural level, as dopaminergic

neurons show activity fluctuations depending on success or

failure.25

F IGURE 4 Convolutional neural network (CNN). The basic idea of a CNN is to evaluate the match between a given picture and a predefined filter.
In this concept, the filter is small in comparison with the size of the picture. Therefore the filter slides over the image. The figure shows an image of a
heart. The upper filter also shows a heart with a 100% match. The filter in the lower panel is an inverted heart with a poor match. The convolution can
calculate the measure of agreement. A numerical agreement value can be obtained by multiplying the pixel values of the picture with the filter values.
However, other mathematical operations can also be applied. In the present example, a high value stands for a high match.12
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The essential components of a reinforcement framework are an

agent and an environment. The agent interacts with the environment.

To bring a mythological example: The prince Theseus goes through a

maze looking for the Minotaur (Figure 5). In this case, Theseus is the

agent, and the labyrinth is the environment. The agent takes action in

the environment and gets a reward for it. The full reward is usually

not immediate, as many steps must be taken. After each step, the

agent is in a new state. This new state has a specific value. To return

to the maze example, the value of a state is higher the closer the

agent is to the Minotaur.

But how does the agent know what step to take at the start?

Principally, the agent can do two kinds of actions. It can exploit the

environment by taking steps with known favorable rewards. But the

agent can also explore the environment, which means that the agent

does a random step to determine whether this new move goes along

with more or less reward. It is the mixture of exploration and

exploitation that makes the learning of the algorithm. Richard Bellman

put this in a mathematical form in the 50th of the last century.26

3.6.2 | Clinical applications

Reinforcement learning can be used in medical situations where

sequential decision‐making is mandatory. Its area of operation can

therefore be clinical‐decision support systems. In this context, a clear

reward function must be defined. First experiences have been made

with these algorithms concerning mechanical ventilation or sedation

dosing in intensive care medicine.27,28 Another interesting approach

in cardiology is using a reinforcement model for dose‐finding the

antiarrhythmic drug dofetilide.29

3.7 | Transformers

3.7.1 | Intuition

Actually, transformer models are beyond the scope of this review.

However, since a whole new level of AI has been reached with them,

they will be briefly discussed at this point. They belong to the

generative AI models that generate new data based on existing data.

These new data can be text, images, or code. Giving an input, also

called “prompt,” to the generative model gives back the statistically

most probable answer. In this characteristic, they differ from the

former discriminative models. Discriminative models give as output

the probability of belonging to a label.

The history of transformers started with the paper “Attention is

all you need,” which is also the core concept of this new

architecture.30 The attention mechanism tries to identify the meaning

of each piece of information in a sequence of information. In this

ability, the algorithm resembles human intelligence. For example,

when a human sees a picture, the human brain can distinguish

important from unimportant parts. The brain then directs attention to

these crucial parts and extracts features from these regions.

Transformers belong to semi‐supervised learning algorithms.

They are pre‐trained by unlabeled datasets and fine‐tuned by

supervised learning. In contrast to RNN, transformers analyze data

not sequentially but on the attention algorithm. That allows

transformers to run parallel analyses, accelerating the learning

process. The LLMs like GPT‐3 and ‐4 (generative pretrained

transformer 3rd and 4th generation) BERT (Bidirectional Encoder

Representations from Transformers), and Claude are the well‐known

transformers.

F IGURE 5 Reinforcement Learning. (A) Scheme of the basic concept of reinforcement learning. The agent acts in the environment and
reaches new states and rewards. This leads to a feedback loop. On the right side (B), you see a practical example. The prince must find the
Minotaur. The maze has three predefined fields: an insurmountable streamlined obstacle, a lake, and the Minotaur. Now, the prince starts
moving. If he chooses the way up, he has the chance to find the Minotaur, which ultimately leads to a reward of 1. If he chooses the right way, he
will drown in the lake, leading to a reward of −1. When the prince takes the first step, he can only explore the environment because he knows
nothing about it. If he goes up to field 1, the value of his state increases as he is closer to the Minotaur, although he gets no immediate reward. If
he goes right to field 7, the value of his state decreases as he is near the lake, which is associated with a negative reward. Following this concept,
each field in the maze can be assigned a value. These values can be calculated with the Bellman‐Equation.
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3.7.2 | Clinical application

One of the most groundbreaking successes of transformers in medicine is

the prediction of the three‐dimensional structure of proteins based on the

sequence of proteins using the AlphaFold algorithm.31,32 So far, there

have been only isolated applications of transformers in cardiology.

Recently it has been reported that Chat‐GPT can give reasonably correct

recommendations for cardiovascular disease prevention.33

3.8 | Graph neural networks (GNN)

3.8.1 | Intuition

Classical ML has the problem of recognizing contextual relationships.

However, that is a strength of GNNs. They can be applied in both

supervised and unsupervised learning settings. A graph is a structured

way to represent data about the relationship between parameters. In

principle, a graph consists of nodes, also called vortices, and edges,

also called links. A typical example of a graph is a social network

where the nodes are the persons, and the edges are the relationships

the persons have with each other. The nodes could contain personal

characteristics like hobbies, attended school, etc. The edges are the

relationships between the nodes. Using this basal architecture, triples

can be created between two nodes, like “the author is born in

Germany.” In this case, the nodes are “the author” and “Germany,”

and the edge is “is born.” Another example is molecules, where atoms

are the nodes and the bonds are the edges. After establishing the

nodes and edges, an adjacency matrix representing the connections

between the nodes, and a degree matrix, representing the number of

connections of each node can be created.

3.8.2 | Clinical applications

GNN has been used in cardiology to classify polar maps in cardiac

perfusion imaging.34 Another field is the estimation of left ventricular

ejection fraction in echocardiography.35

4 | LIMITATIONS OF AI

Although AI has achieved groundbreaking success in many fields of

medicine, it is far from perfect. There are three significant limitations:

a. Data bias and algorithmic fairness.

In supervised learning, prediction quality essentially relies on the

quality of the data on which the algorithm has been trained. In this

scenario, the classification of the ground truth is crucial. It is plausible

that an image classifieronly works well when pictures of the training

data are labeled accurately. In the same category falls data bias. An

X‐ray classification algorithm trained with data from men cannot be

applied to women. However, data bias is often not as obvious but can

be very subtle. As data are not static, data shifts can cause significant

problems. This category also includes algorithmic fairness. As

algorithms are often trained with historical data, this can lead to

discrimination of vulnerable groups. A prominent example is an

algorithm used to manage the health of millions of patients has been

published. This algorithm incorrectly indicated that black patients are

considerably sicker than white patients.36

b. Security risks.

Adversarial attacks are malicious inputs to ML algorithms that

intentionally try to cause misclassification. Although no examples

have been reported, the threat is considered real, and appropriate

countermeasures are currently being developed.37

c. Impact on clinical outcome.

Although more and more studies with AI algorithms are

prospective, the gold standard in medicine remains the randomized

clinical trial (RCT) evaluating the effect of an algorithm on the clinical

outcome in patients.38 In concrete terms, it is insufficient to be as

good as the ground truth, however defined. Ultimately, the clinical

outcome in RCTs must be equal to or better than the outcome

achieved by human intelligence.

5 | PERSPECTIVE

In many fields of AI, attempts have been made to emulate the

structures of the human brain. However, the performance and

capabilities of human intelligence are unattainable with current

algorithms. Computational neuroscience is a research area between

information technology and neurosciences, which brings scientific

activities in these fields together. Although there are many similarities

between ANNs and the human brain, there are also essential

differences.

AI represents a rapidly developing field. Its use can improve

diagnosis and therapy in many areas of medicine. However, it

becomes essential that we use AI wisely and that we know how it

works. It must not be a black box for doctors. Even though algorithms

can operate autonomously in many cases, it is still essential that

physicians understand them. The ultimate decision on diagnosis or

therapy must remain with the physician. This overview should help to

get a basic understanding of the fundamental algorithms of AI.

However, this review can only present a small selection of algorithms

and therefore does not claim to be complete.
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