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Simple Summary: This review introduces a new class of Artificial Intelligence (AI) algorithms called
hypothesis-driven AI. We elaborate on how this new class of AI methods differs from conventional
AI using published AI algorithms and illustrate the power of hypothesis-driven AI in making new
discoveries in cancer research. Finally, we outline the ingredients needed to overcome limitations
and expand hypothesis-driven AI in the near future.

Abstract: Cancer is a complex disease involving the deregulation of intricate cellular systems be-
yond genetic aberrations and, as such, requires sophisticated computational approaches and high-
dimensional data for optimal interpretation. While conventional artificial intelligence (AI) models
excel in many prediction tasks, they often lack interpretability and are blind to the scientific hypothe-
ses generated by researchers to enable cancer discoveries. Here we propose that hypothesis-driven
AI, a new emerging class of AI algorithm, is an innovative approach to uncovering the complex
etiology of cancer from big omics data. This review exemplifies how hypothesis-driven AI is different
from conventional AI by citing its application in various areas of oncology including tumor classi-
fication, patient stratification, cancer gene discovery, drug response prediction, and tumor spatial
organization. Our aim is to stress the feasibility of incorporating domain knowledge and scientific
hypotheses to craft the design of new AI algorithms. We showcase the power of hypothesis-driven
AI in making novel cancer discoveries that can be overlooked by conventional AI methods. Since
hypothesis-driven AI is still in its infancy, open questions such as how to better incorporate new
knowledge and biological perspectives to ameliorate bias and improve interpretability in the design
of AI algorithms still need to be addressed. In conclusion, hypothesis-driven AI holds great promise
in the discovery of new mechanistic and functional insights that explain the complexity of cancer
etiology and potentially chart a new roadmap to improve treatment regimens for individual patients.

Keywords: Artificial Intelligence; machine learning; domain knowledge; system biology; oncology

1. Introduction

Cancer is a complex disease with a wide array of factors contributing to its etiology. Un-
derstanding its underlying mechanisms requires sophisticated computational approaches
to uncover not only the genetic permutations contributing to uncontrolled cell growth, but
also the cellular and systemic factors that contribute to cancer development and response
to therapy. Years of research have shown that cancer is not just a disease of genes but
rather a disease of systems [1], including epigenetic modifications, alterations in signaling
pathways, tumor microenvironment interactions, immune system responses, and lifestyle
factors. This indicates that the etiology of cancer cannot be merely attributed to aberrations
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of a number of genes, but rather involves a broad array of biological factors, including the
microenvironment [2] and microbiome [3].

Oncology research confronts a number of significant hurdles, including reliable tumor
detection, patient stratification, risk assessment and therapy matching. Although enhancing
early cancer detection methods is crucial, genetic and molecular complexities surrounding
tumor growth dynamics and the onset of metastasis still pose formidable challenges. For
example, the intricate interplay between tumor development and metastasis requires
further investigation to refine early detection strategies [4].

Another pivotal challenge in oncology lies in tumor targeting. In oncogene-driven
cancers, robustly identifying and effectively targeting actionable genomic alterations is
important. However, druggable genomic alterations exist in only a small fraction of patients
with specific tumor types, which restricts the performance of clinical testing in biomarker-
driven trials. In addition, the clinical interpretation of large genomic datasets remains a
formidable barrier to their widespread clinical application. Moreover, tumor heterogeneity
and the emergence of acquired drug resistance are significant barriers that undermine the
success of precision oncology approaches [5,6]. Regarding immuno-oncology, challenges
persist in the successful targeting of solid tumors and the achievement of enduring survival
benefits with immune checkpoint inhibitors, monoclonal antibodies, chimeric antigen
receptor (CAR) T-cell therapy, and beyond. Currently, only a minority of patients experience
long-term benefits from these therapies, and the absence of robustly validated predictive
markers complicates patient selection and treatment optimization [7]. Overcoming these
hurdles may require the development of drug combinations targeting multiple hallmarks
of cancer, which indicates a need for a multifaceted approach.

The burgeoning of next-generation sequencing technologies in the past decade, es-
pecially single-cell sequencing, has facilitated the generation of large amounts of cancer
omics data at an unprecedented scale, together with high-resolution imaging data. Such
high-dimensional omics data are inherently complex, and biologically meaningful signals
are not necessarily detected using linear models and conventional statistical analyses. Arti-
ficial intelligence (AI) has the power to uncover the nonlinear associations of meaningful
signals and, as such, has gained momentum in oncology research in recent years [8].

The rapid evolution of AI technologies, especially deep learning, has emerged as a
transformative force to revolutionize the way we study cancer, including target identifica-
tion and drug response prediction. Although these AI methods are powerful enough to
classify cancer types, stratify patients, and predict outcomes, any meaningful biological
signals learned by AI models are usually obscure to the users. As such, feature selection
methods, such as recursive feature elimination and information gain, have been devised to
identify the data attributes, such as genetic mutations, that contribute to the performance
of AI models. However, feature selection remains external to the learning processes of AI
models and what useful “knowledge” AI models have learned is still inaccessible. Methods
such as decision trees and explainable AI (XAI) [9] have the potential to indicate how AI
models learn and make decisions. Nonetheless, we still lack the information needed to
discern how the meaningful data attributes relate and associate to one another, which is
critical for formulating testable hypotheses to explain the pathogenesis of cancers.

In this review, we coined the term “hypothesis-driven AI” to refer to a new emerging
class of AI for which the learning algorithms are designed based on novel scientific hypothe-
ses. Although some of these AI algorithms have not been well tested, they nonetheless
provide a new avenue for the use of AI technologies in oncology research. We will first
discuss how hypothesis-driven AI differs from conventional AI and then provide examples
of existing AI tools, whose learning algorithm design aligns to a certain extent with the
proposed configuration of hypothesis-driven AI. We will also discuss their utilities and
potential challenges. Finally, we offer our view on the future of hypothesis-driven AI in
oncology research and discuss how this new AI class can revolutionize individualized and
precision medicine.



Cancers 2024, 16, 822 3 of 16

1.1. What Is Hypothesis-Driven AI

The differences between hypothesis-driven AI and conventional AI are summarized
in Figure 1. In brief, conventional AI, be it supervised or unsupervised, utilizes existing
generic learning algorithms that aim to optimize the mathematical parameters that best
fit input data without the incorporation of prior knowledge in the training processes
(Figure 1A). For supervised learning, data are labeled with known classes for classification
models or quantitative measures, such as responsive drug dosages, for regression models.
For unsupervised learning, such as hierarchical clustering, k-nearest neighbor, and self-
organizing maps, the similarity of samples is the basic assumption where distance metrics
such as the Euclidean distance are employed. Feature selection methods are often used to
identify the data attributes (also called features) that contribute to the performance of AI
models. As shown in Figure 1, in the algorithm design and training process of conventional
AI, the inherent associations of selected features that explain the properties of data are often
obscured.
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Figure 1. Comparison of conventional AI and hypothesis-driven AI. (A) The learning pipeline of
conventional AI. The learning algorithms often include weighted connections and distance metrics
without the need to include existing domain knowledge or a hypothesis into the design of learning
algorithms. (B) The design and learning pipeline of hypothesis-driven AI. Knowledge or hypothesis
are the built-in components in the design of learning algorithms; these facilitate the discovery of
novel associations between attributes that can explain data properties.

Contrary to conventional AI, the design of hypothesis-driven AI algorithms requires
the incorporation of domain knowledge and hypotheses (Figure 1B). This indicates that the
learning algorithms of hypothesis-driven AI are more flexible and open to manipulation
based on specific hypothesis settings. Unlike conventional AI, the design of hypothesis-
driven AI models demands the ingenuity of designers while offering flexible frameworks.
In principle, hypothesis-driven AI can be designed based on any existing AI major domains,
including artificial neural networks (ANNs), support vector machines (SVMs), random
forest, and genetic algorithms. Both supervised and unsupervised learning processes
are applicable. Feature selection may or may not be included. However, the resulting
trained hypothesis-driven AI will indicate the inherent structures of the meaningful data
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attributes that explain the behavior of systems, enabling researchers to formulate testable
mechanistic models. Table 1 further summarizes the differences between conventional and
hypothesis-driven AI.

Table 1. Comparison between conventional AI and hypothesis-driven AI methods.

Characteristics Conventional AI Hypothesis-Driven AI

Focus Broad exploration of data patterns Targeted investigation of specific hypotheses

Interpretability Less interpretable More interpretable

Resource Efficiency May require extensive data and
computational resources

Uses resources more efficiently by focusing
on specific areas of interest

Integration of Domain-Specific
Knowledge Limited Encourages integration of domain-specific

knowledge for meaningful biological insights

Experimental Validation May not explicitly incorporate mechanistic
insights for experimental validation follow-up

Test hypotheses and incorporates valid
experimental designs to confirm casual

results or associations

1.2. Why Do We Need Hypothesis-Driven AI in Oncology Research

In order to overcome the complexity of cancer data, researchers have developed a
variety of AI tools to help with cancer diagnosis and treatment. As mentioned, a large
number of AI algorithms have been designed and applied to analyze the patterns and
relationships in large datasets for image recognition, genomic analysis, and clinical data
interpretation. However, most conventional AI models are considered as a “black box”,
meaning that their decision-making process is not interpretable, and the rationale behind
their results is not understandable to researchers or clinicians. Apart from that, these models
are highly dependent on the quality and quantity of the dataset they use. If the dataset is
not large or diverse enough, noise or bias can be easily introduced, and overfitting issues
become very common. Moreover, since these models often lack focus on a specific scientific
or clinical question, the results generated may not offer deeper insights to formulate testable
mechanistic hypotheses. Lastly, running non-hypothesis-driven data analyses via routine
training procedures is usually less efficient, as the researchers are blinded to the way in
which to take the most from the wealth of information embedded in the data. For instance,
conventional analytical pipelines usually look for differentially expressed genes or mutated
genes in cancer data. Such analytical procedures are mainly based on the assumption that
differentially expressed genes and mutated genes are key players in cancer development.
However, as we will illustrate, these assumptions are not always true. Hence, there is
an unmet need to incorporate new perspectives and hypotheses into the design of AI
algorithms in order to better steer AI-based cancer research, as summarized in Figure 2.

One salient advantage of hypothesis-driven AI in oncology is that it offers a targeted
and informed approach to addressing many of the challenges mentioned above. Compared
to conventional AI, hypothesis-driven AI is able to perform focused investigations by
centering on specific hypotheses or research questions and thus enables the use of prior
knowledge to guide its exploration. This approach can generate more interpretable and
explainable results compared to conventional AI tools, since the underlying hypotheses
provide a mechanistic framework for understanding the logic behind certain predictions
or outcomes. Apart from that, hypothesis-driven AI tends to use data resources more
efficiently. Since it allows researchers to concentrate their computation on areas of particular
interest, hypothesis-driven AI can reduce the need for extensive data and computational
resources. It also encourages the integration of domain-specific knowledge to generate
meaningful insights within a specific clinical context. Moreover, this approach allows
researchers to test hypotheses and validate them via AI-based thought experiments, which
in turn guides future experimental designs.
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By integrating computational methodologies with compelling hypotheses, these AI
tools can significantly impact patient outcomes in oncology. For instance, AI algorithms
guided by hypotheses can transform complex data into patterns indicative of early-stage
cancers, potentially revolutionizing early cancer detection methods. Furthermore, for tumor
targeting, hypothesis-driven AI can play a pivotal role in prioritizing actionable genomic
alterations for further investigation. By integrating domain knowledge and informed
hypotheses, AI models can sift through genomic datasets to identify alterations with the
highest potential for clinical impact, which could also mitigate the limitations caused by the
complexity of druggable alterations and the challenges in interpreting clinical outcomes.
Additionally, hypothesis-driven AI can aid in understanding the complex dynamics of
tumor heterogeneity and acquired resistance. By modeling and simulating the evolutionary
processes within tumors, these new AI models can help validate hypotheses about the key
drivers of resistance and potential therapeutic strategies able to counteract them. Below, we
provide examples of AI methodologies for which the design of their learning algorithms to
certain extent is aligned with the configuration of hypothesis-driven AI. We also show case
applications in different aspects of oncology while summarizing the underlying hypothesis
of each of these tools in Figure 3. These AI tools are the predecessors of hypothesis-
driven AI and insightful examples to illustrate the future of hypothesis-driven AI methods
are given.
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2. Recent Developments and Application of Hypothesis-Driven AI in Oncology
2.1. Tumor Classification

Classifying tumors based on their molecular and pathological features is important
when aiming to inform clinicians about the type and stage of a tumor and plans for
treatment. One key challenge is to classify cancers of unknown primary (CUP) origin. CUPs
are characterized by aggressive progression and poor prognosis [10], accounting for 3–5% of
all cancers worldwide [11]. Pathology assessment, which plays a key role in determining
primary cancer types, is often lacking for these tumors and can be a challenging task for
highly metastatic or poorly differentiated tumors. Currently, established targeted therapies
are lacking for CUPs. Therefore, there is a need to develop a tool that is able to guide the
classification of CUPs and help deliver more accurate primary cancer-type predictions for
patients. In order to classify CUPs, Moon et al. recently developed the Oncology NGS-
based Primary Cancer-Type Classifier (OncoNPC, 2023), an XGBoost-based classifier [12].
Their key hypothesis is that the genomic signatures, age, and sex of patients encode the
information needed for the accurate classification of CUPs. They trained OncoNPC on
targeted next-generation sequencing (NGS) from 36,445 tumors across 22 cancers to identify
specific cancer types and unknown primary tumor cancer types (i.e., CUPs). Using a variety
of genomic measures (mutations, mutational signatures, copy number alterations) and
metadata, including patient age at the time of sequencing and sex, allowed for accurate
cancer type prediction. The authors also hypothesized that the classified CUP cancer
types would exhibit increased polygenic germline risk for the corresponding cancers, and
that these predictions could be used for further risk stratification and to potentially guide
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treatment decisions. Importantly, this study also showed that patients who prospectively
received treatments concordant with their OncoNPC-predicted cancer types exhibited
significantly better survival outcomes than those who received discordant treatments.

While this study demonstrated the benefits of the accurate classification of unknown
tumors through OncoNPC, there are some future directions. Although the current study
primarily used retrospective electronic health record (EHR) data from a single institution
for downstream clinical analyses, OncoNPC may offer good generalizability to a broader
patient population. Future studies could benefit from larger, more diverse datasets. Incor-
porating more diverse patient populations could help enhance the model’s performance
across different races and ethnicities.

2.2. Patient Stratification

The accurate grouping of cancer patients into respective cancer types (or subtypes)
and staging is crucial for devising better targeted therapies and management in the clinic.
However, patient stratification is a not an easy task as there are few reliable genetic or
molecular markers that can accurately stratify patients due to their diverse heterogeneity.
Hence, signals from higher biological hierarchies such as pathways and molecular processes
might provide better information to robustly stratify cancer patients.

Elmarakeby et al. recently developed a biologically informed deep neural network,
called P-Net (2021), to stratify prostate cancer patients [13]. The design of the P-Net
algorithm is built upon the hypothesis that evolutionarily conserved biological interactions
and hierarchical structures and information flows can be recapitulated by deep neural
network architectures. In P-Net, the multi-omic status of genes (mutations, copy number,
methylation, and expression) is used as input. The connection of input nodes is determined
by the involvement of a gene (input node) in each pathway (a node in the first hidden
layer). If the pathway contributes to a biological process that is relevant to the disease, the
connection continues to the next hidden layer node (the biological process) and then finally
reaches the output node, representing a disease state. Once the model is trained, researchers
can trace back hidden nodes corresponding to pathways or biological processes and thus
identify key pathway-representing nodes whose activation significantly contributes to
disease prediction. In this way, P-Net additionally offers an interpretable computational
platform for researchers to identify the critical biological pathways and associated genes
expression profiles contributing to disease classification.

Although curated pathway databases are incredibly useful, our knowledge on the
specific gene–pathway relationship is incomplete; thus, the neural network architecture
of P-Net might leave out a number of important genes or pathways that contribute to
disease stages. However, the work by Elmarakeby et al. demonstrates the flexibility of
deep neural networks in their architectural design, particularly the inclusion of specific
domain knowledge, a strategy that shows great potential in other areas of cancer research
such as finding driver mutations in cancer development.

2.3. Deciphering New Class of Cancer Genes

Cancer-driving genes are not limited to mutated oncogenes, but can involve a myriad
of genes whose function does not directly involve tumorigenesis but that are needed for
tumor maintenance. This includes the so-called “never mutated” oncogenes. A previous
study by Gatenby et al. used a computational modeling approach to reveal the clinical
benefits of targeting these never mutated oncogenes [14]. Building upon these observations,
we proposed that there is a new class of cancer genes, referred to as “dark cancer genes” or
Class II cancer genes, that are neither mutated nor differentially expressed but act as “signal
linkers” to coordinate oncogenic signals between mutated and differentially expressed
genes. These cancer-relevant genes are often missed using traditional statistical methods.

To detect dark cancer genes, we developed the Machine Learning-Assisted Network
Inference (MALANI) tool (2017) [15]. The MALANI algorithm was designed based on
the hypothesis that the dot product of gene expression, regardless of its mutational status,
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captures nonlinear information that reflects the importance of a given gene pair in cancer
etiology. The MALANI algorithm was implemented using support vector machines (SVM)
and trained across nine cancer types. Supervised learning (cancer versus normal) was
performed for each cancer type, using the dot product of gene–gene expression pairs as
inputs. Feature selection methods were employed to identify gene pairs whose dot products
improved the classification performance. Cancer-specific networks were reverse engineered
from selected gene pairs and these successfully identified dark cancer gene candidates that
are not differentially expressed or mutated (approximately 3% of the ~19,000 genes). Dark
cancer genes were also found to function as coordinators between differentially expressed
network hub genes, which have high connectivity in a network, and highly mutated genes.
The MALANI algorithm therefore can identify linker genes that are important in conveying
oncogenic signals and offers a strategy for new targeting opportunities.

However, there is still room to improve MALANI. For instance, the MALANI algo-
rithm can be devised to incorporate other omics layers such as epigenetics and proteomics.
Also, it remains to be seen how cancer progression affects the type and number of dark
cancer genes. Future work is needed to explore how targeting dark cancer genes can better
benefit cancer patients.

2.4. Finding Chemical Fingerprints That Associate with Drug Response

Predicting how cancer cells respond to a given drug is another important area in on-
cology. In particular, drug prediction and drug matching play a pivotal role in personalized
medicine and are key to devising effective therapeutic interventions. Due to the intricate
nature of pharmacokinetics (how bodies modulate drug actions) and pharmacodynamics
(how drugs interact with bodies), specific treatments for individual patients are becoming
more and more important for patients’ pharmacological outcome. Identifying the right
combination of biological features underlying personal cancer etiology is crucial for pre-
dicting how a patient will respond to specific drugs. Precision in drug prediction thus not
only enhances treatment efficacy, but can also minimize potential side effects.

Symbolic regression (SR), which is commonly built in combination with a genetic
algorithm, is a regression method guided by the hypothesis that the right combinations
of symbolic features (e.g., mathematical operators) encode crucial information to govern
the behavior of a system, such as drug response and cancer etiology. Symbolic regres-
sion has been successfully used to discover physical laws that govern the properties of
physical systems [16,17], by searching the equation space to find the best mathematical
function that fits the data. Some examples are the TuringBot software (v2.16.1) and AI
Feyman algorithm [18]. In summary, this approach offers a promising avenue for distilling
complex biological relationships into interpretable simple rules, bridging the gap between
intricate molecular interactions and actionable insights for therapeutic interventions and
drug response.

A recent study described a method for generating interpretable quantitative structure–
activity relationship models in the field of chemoinformatics. The tool used in this research
is called “Filter-Introduced Genetic Programming” (FIGP) (2022) [19]. FIGP is an extension
of symbolic regression (SR) combined with Genetic Programming (GP). The goal is to
discover mathematical expressions that can describe the relationships within a dataset.
The underlying hypothesis of this method is that by incorporating three filters into GP-
based SR (Function filter, Variable filter, and Domain filter), along with nonlinear least-
squares optimization, it is possible to improve the predictive ability of SR models while
generating simpler and more interpretable mathematical expressions. The authors propose
that FIGP will be particularly useful for generating interpretable quantitative structure–
activity relationship/quantitative structure–property relationship (QSAR/QSPR) models.
The study provides a detailed explanation of the methodology and the experimental
conditions for both FIGP and conventional GP. It also outlines the evaluation metrics used
to assess the predictive performance of these models.
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2.5. Extracting Associations of Data Attributes That Explain Data Properties

The functional associations between genes are important in understanding cancer
etiology, in addition to the physical interactions between proteins and other gene products,
such as RNAs. Conventionally, functional associations between genes are inferred from
statistical-based correlative approaches, such as the co-expression of genes using Pearson’s
correlation [20] and mutual information [21]. However, conventional statistical methods
often fail to capture the nonlinear functional associations of genes that explain the properties
of high-dimensional cancer sequencing data.

We recently developed the Artificial Neural Network Encoder (ANNE) (2022), an
Artificial Neural Network (ANN) implemented with a novel weight engineering algorithm
to reverse engineer gene–gene interactions from gene expression data [22]. The weight
engineering algorithm was inspired by how the human brain learns and stores knowledge
in the form of sparse spatial representations. One way the brain encodes information is
by leveraging connections between neurons, which are fundamentally plastic and select
which information to store based on its importance. This process implies that changes such
as “pruning” occur during the learning process, i.e., redundant information is discarded.
This process allows the learned information to be sparsely represented and distributed
as “weights” in inter-neuronal connections throughout the neocortex. The underlying
hypothesis of this weight engineering algorithm is that inter-neuronal weights resulting
from the learning process represent the knowledge the brain learns from observation and
data processing. We hypothesized that a similar scenario also takes place in ANN. Hence,
mathematical manipulation of trained inter-neuronal weights might be able to recover
the learned knowledge by ANN. We tested this idea using an autoencoder, a commonly
used deep learning model able to reduce data dimensionality via the reconstruction of
the input data [23]. Here, the autoencoder represents a “little brain” and the trained inter-
neuronal weights represent the “knowledge” learned. Using a breast cancer cohort as a
proof-of-concept study case, we showed that by reverse engineering gene–gene association
networks (the extracted “knowledge” from trained autoencoders) with our weight engi-
neering algorithm, we were able to identify both known and novel clinical aspects of breast
cancer etiology.

Our weight engineering algorithm shows that trained ANNs indeed encode learned
“knowledge”, which is represented by associations between data attributes (e.g., gene
expression) in inter-neuronal weights. These associations between data attributes can
serve as a knowledge discovery framework to uncover the novel functional associations
between genes that underpin cancer etiology. Yet, there is still plenty of room to improve
knowledge discovery via weight engineering, for instance, by incorporating multi-omics
data to decipher how genes are regulated at multi-omics levels.

2.6. Phenotype Prediction

Even patients diagnosed with the same cancer type can exhibit distinct cancer pheno-
typic properties, such as tumor aggressiveness and responsiveness to therapeutics. Cellular
phenotypes are not the outcomes of single gene activity, but involve a myriad of genes
and pathways at different functional hierarchies within the cells. Although various AI
algorithms including deep learning methods have been employed to perform phenotype
prediction, most AI algorithms, especially ANNs, are “black boxes” and determining how
AI models are trained to make decisions is difficult [24].

Ma et al. devised an ingenious deep learning algorithm called DCell (2018) to visualize
the “black box” of deep learning [25]. The underlying hypothesis of DCell is that, by incor-
porating an extensive collection of domain knowledge and data about cellular subsystems
and their hierarchical structure, it is possible to create an interpretable deep neural network
that can accurately simulate the function of a eukaryotic cell. This methodology overcomes
a current limitation of ANNs by incorporating extensive knowledge of cell biology, making
it a visible neural network (VNN) with a more interpretable inner structure. Through a
study on the budding yeast Saccharomyces cerevisiae with a focus on accurately simulating
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cellular growth, a complex phenotype influenced by genetic interactions, Ma et al. showed
that DCell could successfully capture the phenotypic variation of cellular growth in yeast,
including the non-additive portions arising from genetic interactions.

A more recent study by Kuenzi et al. using DCell (2020) aimed to predict drug
response phenotypes and drug synergy in human cancer cell lines revealed the power
of this algorithm in constructing interpretable models for cancer treatment [26]. In this
study, Dcell was integrated with three embeddings as inputs: drug response, genotype,
and drug structure. The authors envision that future work may integrate mutations with
additional levels of molecular information such as epigenetic states, gene expression, or
microenvironmental influences. Since current Dcell structures are built upon both annotated
gene ontologies (GO) and curated literature that can be biased to well-studied genes, the
algorithm can be enhanced by integrating resources from novel gene–gene associations or
gene–function assignments from computational models with robust modeling results.

2.7. Uncover New Class of Genes That Govern Spatial Organization of Cells in
Tumor Microenvironment

In addition, the gene activities taking place within cancer cells that sustain their func-
tional and survival fitness, their extracellular environments or tumor microenvironments
(TMEs) are equally important in shaping their phenotypic behaviors [27]. As a conse-
quence, the spatial organization of cells within a TME can be influenced by its neighboring
cells [28]. With advances in spatially resolved sequencing technologies in recent years,
researchers can now map cells at their spatial locations in unprecedented detail [29]. A
number of statistical-based and AI methods have been developed to identify spatially
variably expressed genes (SVGs) [30–32] and understand spatial cell distribution. Though
it is important to indicate differential gene activities across distinct TME regions, SVGs
cannot indicate how these gene activities affect the spatial organization of cells. This is
because the detection of SVGs is, in principle, similar to the identification of differentially
expressed genes detected from bulk or single cell sequencing data; though it provides
valuable information, it cannot explain the underlying regulatory processes that dictate the
organization of cells in their microenvironments.

The success of the de novo in silico reconstruction of organization of cells from tran-
scriptomics data [33,34] implies that whole-genome expression encodes gene activities that
indicate how cells are arranged in space. As such, we hypothesize the existence of a new
class of genes named spatially predictive genes (SPGs), whose collective expression can
predict where cells (or subpopulations of cells) are organized in space. This inspired us
to develop a novel deep learning algorithm called Spatially Informed AI (SPIN-AI) (2023)
to test this hypothesis [35]. SPIN-AI employs an unbiased approach and uses only the
spatial gene expression, per patient per slide, as an input and is trained to predict the x
and y spatial coordinates in a spatial transcriptomic slide. Using human squamous cell
carcinoma [36] as a proof-of-concept study, we showed that the identities of SPGs can
be distinct from SVGs, and that their activities can help dictate how cells are spatially
arranged in cellular niches. Further, this study proposes that SPGs can be viewed as new
actionable targets in cancer treatment. However, there are still a number of areas to be
explored. For example, how does the genetic heterogeneity of cancer cells affect the number
and identities of SPGs. Another area to investigate is whether SPGs can also inform drug
response phenotypes.

3. Discussion

With examples of hypothesis-driven AI predecessor tools and their application in
distinct areas of oncology, it becomes evident that this new class of AI methods holds great
promise for the future of medicine, as shown in Supplementary Table S1. However, not
all examples discussed above are hypothesis-driven AI in the strict sense. For example,
OncoNPC and MALANI do not possess all the desired aspects given in Table 1, but
nonetheless offer a transition from conventional to hypothesis-driven AI.
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Despite their wide area of application in cancer research, hypothesis-driven AI tools
show several areas for improvement. While some models such as OncoNPC have shown
efficacy, there is a need to generalize these models across different patient populations
and cancer types. However, since these models were developed based on disease-specific
domain knowledge, this might inadvertently limit their utility in other disease contexts.
Utilizing domain knowledge agnostic to a specific disease type while retaining the flexibility
to adapt to a specific biological context can enhance the generalizability of a hypothesis-
driven AI tool to broader disease types. Moreover, as the structure and dimensionality of
data become more complex by including distinct biological layers such as genetics and
environmental, researchers face greater challenges in formulating hypotheses that can
effectively manage different levels of data attributes, and this demands further abstract
reasoning from researchers. Additionally, the selection of which knowledge domain to
integrate into algorithmic design remains subjective and varies among researchers.

Figure 4 summarizes the new ingredients needed for designing hypothesis-driven AI
algorithms and illustrates how these can be utilized to unearth hidden gems embedded
within the data to help better inform clinical decisions. Below we provide some open
questions and food for thought that we think could inspire the development of hypothesis-
driven AI in the near future.
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4. Food for Thought

Given the areas of development, a strategic way to dissect different layers of data
attributes and extract information relevant to the hypothesis is vital for the evolution of
hypothesis-driven AI tools. In the following sections, we propose several directions for
future development in this context.

All AI methods, including hypothesis-driven AI, involve learning from data and
in that sense are data driven. A key distinction of hypothesis-driven AI lies in the fact
that it opens a new way of thinking regarding the extraction of the hidden information
embedded in the data, which cannot be readily accomplished by conventional AI. This
framework shapes how data will be collected and even generated given the scientific or
medical hypothesis to be tested, for example, understanding how cancer develops. Another
example is how to transform data attributes (e.g., genetic mutations) into input forms that
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are compatible with the proposed hypothetical frameworks. This, in fact, will likely allow
researchers to use data in more efficient and creative ways.

One notable aspect is the significance of altered epigenetic landscapes in cancer etiol-
ogy, which goes beyond genetic mutations [37,38]. In addition to DNA methylation and
histone modification, it is now becoming appreciated that alterations in epigenetics can
lead to the gain of super-enhancers [39] and gross changes in chromatin remodeling [40].
Further, the processes of epigenetic regulation can go beyond the cellular level, thereby
impacting the tissue, organ, and even the whole-body level. We recently proposed the Man-
ifold Epigenetic Model (MEMo), a conceptual framework able to explain how epigenetic
memories can be established at the body-wide level [41]. We defined manifold epigenetics
as a study that is concerned with the totality of molecular, cellular, and environmental
systems-based mechanisms that confer body-wide phenotypic memories without altering
DNA sequences. Guided by this concept, it is possible to devise hypothesis-driven AI algo-
rithms that are analogous to P-Net, DCell, and ANNE by taking multi-layered epigenetic
regulation into consideration.

Another biological concept we proposed recently is the Gene Utility Model (GUM),
which states that the significance of a gene in disease etiology hinges on its utility within a
protein–protein interaction (PPI) network specific to a certain disease context [42]. Here, we
simulated gene utilities using a process-guided algorithm [43] and showed that gene utility
profiles capture the patterns of chromosomal aberrancies in advanced-stage neuroblastoma,
a childhood cancer with few somatic mutations but that shows enigmatic conserved chro-
mosomal abnormalities [44]. Hence, the integration of biological concepts, such as gene
utility, with omics profiles in the formulation of new-generation hypothesis-driven AI algo-
rithms can help AI algorithms to sift through complex omics and guide the identification
of targetable associations.

Cancer can also be described as a type of chronic disease that is similar to metabolic
syndromes and neurodegenerative diseases [45] in the sense that many patients require
long-term and complex care. As chronic diseases often involve multiple organs and have
high comorbidity rates with other diseases, it is important to broaden our perspective
on cancer etiology by examining the modulation of multi-organ functions. For instance,
kidney injury has been linked to cachexia [46], and dysfunctional interorgan crosstalk can
also induce pathological systemic niches and contribute to disease progression, including
cancer metastasis [47]. We recently proposed the Locked-State Model (LoSM), which
states that positive feedback loops sustaining inter-organ communication can help build
memory-like properties that “lock” healthy and disease states [48]. LoSM provides a
new conceptual framework to describe how memory-like inter-organ communication can
contribute to disease etiology and how therapeutic intervention on pathological organ
crosstalk can provide pharmacological benefits to patients. The concept of LoSM therefore
encourages the design of AI algorithms based on hypotheses that incorporate not only
cell–cell communication, but also organ–organ communication.

Drugs are often not ideal “magic bullets” that only target a single molecule [49].
Rather, drugs are promiscuous and act on multiple targets, albeit with different binding
specificities, and often lead to off-target effects [50]. Hence, the action of drugs is often
multifaceted and multidimensional, involving gene products that participate in diverse
biological pathways and even different organs. For instance, altering the microbiome can
affect sensitivity to immune checkpoint inhibitors [51]. It is therefore important to take these
factors into account when devising hypothesis-driven AI for the drug discovery pipeline.
We previously proposed Manifold Medicine built upon five body-wide vectorial axes
(genetic, molecular network, internal environment, neural–immune–endocrine, microbiota)
and outlined the manifoldness nature of the mode-of-action of drugs into target modes
(subject), regimen modes (predicate), and patient modes (modifier), and illustrate how a
manifold treatment, combining drugs with different modes of action, can counteract the
vectorial tendencies of diseases [41]. We believe that this conceptual framework could
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be incorporated in formulating new hypotheses in AI algorithm design to uncover how
different types of body axes and the mode-of-action of a drug interact.

Generative AI (GAI) also presents a cutting-edge opportunity to revolutionize cancer
research and can be included in the design of hypothesis-driven AI models. For instance,
Generative Adversarial Networks (GANs), a generative model, can be employed to simu-
late realistic biological data including genomic and imaging data, which are particularly
valuable when access to large, diverse datasets is limited. In the context of cancer research,
generative AI can be used to generate synthetic patient cohorts [52,53]. By combining
these synthetic cohorts with real-world data, the robustness and generalizability of current
predictive AI models can be increased. For example, GANs can be trained on existing
genomic and imaging data to generate synthetic samples that mimic the characteristics of
real cancer data. Additionally, generative AI can be utilized to simulate the evolution of
cancer over time [54], offering insights into dynamic changes in tumor biology and aiding
in the development of more adaptive and personalized treatment strategies. In earlier work,
we proposed that gene–gene pairs that flip in their activities can modulate drug response
phenotypes [55]. We named these gene pairs “regulostats”. We believe that GAI has the
power to encapsulate such relationships and advance our understanding of how pheno-
typic behaviors are modulated in cancer cells. Thus, it is possible to design generative AI
architectures by incorporating domain-specific knowledge and simultaneously incorporate
broad biological concepts.

A future AI tool that can use not only multi-omics, but also medical imaging data,
liquid biopsy omics, physiological data, and patient self-reported outcomes to track patient
outcomes and thus inform on patients’ responses to future treatment could be designed
as a software. With more comprehensive data being integrated, AI can be more accurate
in predicting the next step in tumor progression across different patients. With respect to
the therapeutic targeting, the development of an AI platform that integrates knowledge
from diverse sources, including the scientific literature, clinical trial data, and molecular
databases, to identify novel drug repurposing opportunities for specific cancer types is also
needed. By constructing a dynamic knowledge graph to represent the intricate relationships
among drugs, diseases, molecular targets, and biological pathways, this new AI model
can utilize pattern recognition to uncover the hidden associations between drugs and
signaling pathways. The platform should also incorporate real-world patient data from
electronic health records for validation and personalized patient stratification. Through
this platform, tumor targeting might become more efficient and allow for advancements in
drug repurposing.

5. Conclusions

In conclusion, we have defined a new class of AI algorithm called hypothesis-driven
AI, which shows great promise in overcoming various challenges in current oncology
research. The examples provided in this review make it clear that this new class of AI
methods is beginning to flourish. Unlike conventional AI, designing learning algorithms of
hypothesis-driven AI requires researchers to demonstrate ingenuity, creativity, innovation,
and the careful selection of domain knowledge. Such special features can have dual
consequences, representing both the strengths and weaknesses of hypothesis-driven AI
methods. The strength is that researchers can formulate hypothetical modes of the gene–
gene or gene–pathways associations that underpin cancer etiology and develop learning
algorithms to perform “AI thought experiments” to validate the proposed hypotheses. This
will enable the discovery of novel gene–gene and gene–pathway associations, which are
often overlooked by conventional AI. On the other hand, it is challenging for researchers to
hypothesize all generalizable modes of relationships.

Nevertheless, by aligning computational methodologies with well-informed hypothe-
ses, hypothesis-driven AI offers a targeted and informed way to address issues ranging from
tumor detection to drug targeting. Since the design of these AI algorithms is driven by hy-
potheses, researchers can leverage the synergy between domain knowledge, computational
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models, and experimental validation to gain a deeper understanding of cancer biology and
develop more effective cancer treatments in the near future. Through the exploration of
key concepts, methodologies, and promising applications, we believe this review will serve
as a roadmap towards the development of the next generation of hypothesis-driven AI to
advance individualized and precision medicine.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers16040822/s1, Supplementary Table S1. Summary of different
hypothesis-driven AI algorithms and their application in oncology research.
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