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Abstract: Cardiovascular diseases exert a significant burden on the healthcare system worldwide.
This narrative literature review discusses the role of artificial intelligence (AI) in the field of cardiology.
AI has the potential to assist healthcare professionals in several ways, such as diagnosing pathologies,
guiding treatments, and monitoring patients, which can lead to improved patient outcomes and a
more efficient healthcare system. Moreover, clinical decision support systems in cardiology have
improved significantly over the past decade. The addition of AI to these clinical decision support
systems can improve patient outcomes by processing large amounts of data, identifying subtle
associations, and providing a timely, evidence-based recommendation to healthcare professionals.
Lastly, the application of AI allows for personalized care by utilizing predictive models and generating
patient-specific treatment plans. However, there are several challenges associated with the use of AI in
healthcare. The application of AI in healthcare comes with significant cost and ethical considerations.
Despite these challenges, AI will be an integral part of healthcare delivery in the near future, leading
to personalized patient care, improved physician efficiency, and anticipated better outcomes.

Keywords: cardiovascular diseases; artificial intelligence; cardiology; clinical decision support
systems; patient outcomes; predictive models; personalized care; physician efficiency

1. Introduction

Cardiovascular diseases are one of the leading causes of high morbidity and mor-
tality worldwide. The disease burden has continued to increase over the past decade
thereby requiring urgent interventions to prevent cardiovascular diseases and improve
treatment outcomes [1]. The management of cardiovascular diseases requires a comprehen-
sive strategy, including prevention, early diagnosis, appropriate treatment, and continuous
monitoring and follow-up [2–4]. In recent years, noteworthy advancements in medical
technology and research have significantly improved healthcare delivery in all these as-
pects [5,6]. However, the increasing prevalence of cardiovascular diseases, along with an
aging population, highlights the urgency for implementing newer technologies to improve
patient outcomes and reduce the overall burden of cardiovascular diseases.

The integration of artificial intelligence (AI) into healthcare has sparked a paradigm
shift in various medical disciplines, including cardiology. AI is a field of computer science
focused on creating systems or machines that can perform tasks that typically require
human intelligence. It encompasses various techniques that enable machines to simu-
late human-like behaviors such as learning, reasoning, problem-solving, perception, and
decision-making. Machine learning is a subset of AI that is a technique that allows ma-
chines to learn from vast training data without being explicitly programmed. It involves
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the development of algorithms that enable computers to recognize patterns within datasets,
learn from these patterns, make predictions, and/or take actions based on the learned
information [7–9]. The capabilities of AI and machine learning can be used together to
revolutionize healthcare. AI’s transformative potential is evident in its applications across
diagnostic imaging, personalized treatment, patient monitoring, and decision support
systems. Within cardiology, AI algorithms, notably machine learning models like Con-
volutional Neural Networks (CNNs), have revolutionized the interpretation of medical
images, such as cardiac magnetic resonance imaging (MRI), computed tomography scans
(CT scans), and echocardiograms [10,11].

Natural Language Processing (NLP), another facet of AI, has recently been adopted
by cardiologists to streamline the documentation process. NLP-driven solutions aid in
converting spoken medical notes into comprehensive electronic health records, facilitating
accurate and efficient record-keeping. Moreover, NLP algorithms contribute to data analysis
within medical records, unveiling invaluable patterns and insights that aid in identifying
trends and optimizing patient care pathways [12,13].

In tandem with these advancements, the integration of robotics in cardiac care holds
promise for procedural precision and efficiency. Robotics-assisted interventions, such as
robotically assisted surgery and catheter-based procedures, enable intricate maneuvers with
enhanced accuracy, thereby reducing procedural risks and improving patient outcomes.
Expert systems, a branch of AI simulating human expertise, have been applied in decision
support systems within cardiology [14,15]. These systems analyze patient-specific data,
leveraging accumulated knowledge and algorithms to offer tailored recommendations
to healthcare practitioners. These systems, when embedded within clinical workflows,
contribute to more informed decision-making and personalized patient care.

Furthermore, computer vision, an AI domain focusing on visual data interpretation,
aids in the interpretation of cardiac imaging modalities, such as MRI and CT scans, en-
hancing diagnostic precision. Cognitive computing, an evolving AI discipline emulating
human cognitive functions, augments healthcare by assimilating vast data sets, assisting in
treatment planning, and predicting patient outcomes [16,17]. Affective computing, with
its focus on recognizing and responding to human emotions, plays a burgeoning role
in patient-centric cardiology. By analyzing patient sentiments and behaviors, affective
computing contributes to personalized interventions and improved patient experiences.
Reinforcement learning, an AI paradigm emphasizing decision-making through trial and
error, holds the potential to optimize treatment strategies and therapeutic interventions
in cardiology, fostering adaptive, patient-specific approaches [18]. Speech recognition
technology, another facet of AI, facilitates seamless interaction between healthcare profes-
sionals and technology, expediting data entry processes and enabling real-time dictation of
medical records [19,20]. The fusion of these diverse AI domains offers a multidimensional
approach to addressing the challenges in cardiology, ranging from diagnostic precision and
personalized treatments to streamlined workflows and patient-centric care.

These advancements show promise in improving diagnostic accuracy and enhancing
healthcare provider efficiency. Moreover, AI has demonstrated remarkable capabilities
in predicting cardiac events and personalizing treatment based on individual patient
profiles [21,22]. Whether identifying early signs of cardiovascular disease, optimizing inter-
vention procedures, or providing decision support in clinical settings, AI’s contributions to
cardiology are diverse and impactful. However, the widespread integration of AI in cardi-
ology faces challenges, including data quality, privacy concerns, regulatory frameworks,
and ethical considerations. Addressing these challenges is crucial to leveraging AI’s full
potential in enhancing patient care and advancing cardiology practice [23,24].

In this manuscript, we explore the role of AI in cardiology, highlighting its potential to
improve diagnostic accuracy, personalize treatment, enable remote patient monitoring, and
support clinical decision-making (Figure 1). Furthermore, we discuss the challenges and
future directions for the responsible integration of AI technology in the field of cardiology.
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2. Methods

A comprehensive literature review was conducted to gather relevant articles, peer-
reviewed journals, and publications related to the integration of AI in the field of cardiology.
Various academic databases, including PubMed, SCOPUS, and Google Scholar, were
systematically searched using keywords such as “AI in cardiology”, “machine learning”,
“cardiovascular diseases”, and related terms (Figure 2). The search was limited to studies
published within the last decade to ensure relevance to current advancements.
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Studies and articles focusing on AI applications in cardiology, specifically in diagnostic
imaging, personalized treatments, decision support systems, and patient monitoring, were
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meticulously reviewed. Selection criteria included relevance to AI techniques (e.g., machine
learning and deep learning) in cardiology, emphasis on advancements in diagnostic accu-
racy, personalized care, and clinical decision support systems. The selected literature was
thoroughly analyzed and synthesized to identify key themes, methodologies, and findings
regarding the use of AI in cardiology. The data synthesis process involved categorizing
studies based on their contributions to diagnostic accuracy enhancement, personalized
treatments, decision support systems, and patient monitoring.

The quality and credibility of the included studies were evaluated based on study
design, methodology, sample size, statistical analysis, and relevance to the manuscript’s
focus. Only peer-reviewed studies with robust methodologies and reliable data sources
were included in the synthesis. This narrative literature review employed a qualitative
synthesis approach, aiming to construct a coherent narrative that synthesizes and interprets
the findings from the selected studies. The narrative approach allowed for the exploration
of the broader implications and potential future directions of AI integration in cardiology,
beyond a mere aggregation of findings.

Limitations of the review process included the reliance on available literature, po-
tential publication biases, and variations in methodologies among the included studies.
Additionally, the rapidly evolving nature of AI technologies in healthcare may introduce
limitations in capturing the latest developments.

3. Accelerating Patient Benefits in Cardiology Using Artificial Intelligence

AI algorithms are being used extensively within the field of cardiac image analysis [25].
Machine learning models such as CNNs have been developed and used to interpret medical
images such as cardiac MRI, CT scans, and echocardiograms [26]. In a study conducted
by Hannun et al. in 2019, deep neural network models outperformed cardiologists in
diagnosing electrocardiogram (ECG) abnormalities and arrythmias. The deep neural
networks achieved high diagnostic performance, with an average area under the receiver
operating characteristic curve of 0.97 and an average F1 score of 0.837, surpassing that of
average cardiologists (0.780). The results indicate that this deep learning method and AI
have the potential to enhance the efficiency and accuracy of ECG analysis, decreasing the
number of incorrect diagnoses in automated ECG interpretations and supporting expert-
human ECG interpretation by giving priority to urgent cases. Additionally, these results
show that AI has the potential to improve the accuracy of diagnosis and can be used
alongside healthcare experts [27]. AI was also used in another study to predict the chances
of having atrial fibrillation with the help of wearable ECG monitors. The researchers
used AI and convolutional neural networks to analyze standard 10-s, 12-lead ECGs to
look for the electrocardiographic signature of atrial fibrillation, even during normal sinus
rhythms. They included over 180,000 patients with ECGs recorded between 1993 and 2017
and validated rhythm labels. The AI-enabled ECG has an area under the curve of 0.87,
a sensitivity of 79%, a specificity of 79.5%, and an accuracy of 79.4% for detecting atrial
fibrillation. This shows that AI may make it possible to identify at-risk individuals with
atrial fibrillation when their sinus rhythm is normal, which may have advantages for the
early diagnosis and treatment of the illness [28]. In summary, these results underscore
the promising capabilities of AI and machine learning in improving diagnostic accuracy,
increasing physician efficiency, and reducing errors in the field of cardiology, ultimately
contributing to enhanced patient outcomes.

Another common diagnostic test in the field of cardiology is echocardiography, which
can be used to diagnose various cardiovascular pathologies. To accurately diagnose cardio-
vascular disease, it is essential to precisely evaluate the left ventricular systolic function.
Despite being real-time and non-invasive, echocardiography is subject to human error
due to human experience and interobserver variability, particularly when assessing the
global longitudinal strain (GLS). The use of AI and its capacity for learning to precisely
identify cardiac structures, calculate ventricular volume, and assess myocardial motion
has emerged as a solution. In 2021, an AI system was developed to assist in the detection
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of structural abnormalities within the heart, such as certain valve disorders found within
echocardiographic images [29]. Furthermore, a deep-learning approach was used to auto-
matically calculate the left ventricular ejection fractions from echocardiogram images to
assess cardiac function [30]. However, while these AI applications showcase promising
strides in improving echocardiography’s diagnostic accuracy, challenges persist in the
widespread adoption of AI-driven solutions within clinical settings. Validation across
diverse patient populations, standardization of AI algorithms, and integration into routine
clinical workflows are areas of ongoing exploration and development. Furthermore, the
interpretability of AI-generated assessments and ensuring seamless collaboration between
AI systems and clinical expertise are pivotal for their successful implementation in enhanc-
ing echocardiography’s diagnostic capabilities. Future endeavors should focus on refining
AI models to provide interpretable results, ensuring their robustness in diverse clinical
scenarios and fostering synergistic collaborations between AI technology and healthcare
professionals. These steps are critical in establishing AI as a reliable and indispensable tool
in augmenting echocardiography for precise cardiovascular diagnoses.

In addition to echocardiography, the use of cardiac MRIs and CT scans is emerging.
While no studies were found on using AI and machine learning in the field of cardiology,
they have been shown to work in other medical sub-specialties. For example, the use
of AI algorithms has been revolutionary in classifying and detecting diseases from MRI
scans as demonstrated by a study conducted in 2018, which used AI to effectively diagnose
Alzheimer’s disease from MRI images [31]. AI technology has also been effective at reading
CT scans, particularly in identifying lung cancer, as seen in a 2019 study on lung cancer
screening [32]. These studies suggest that there is potential to utilize AI and machine
learning in the field of cardiology by recognizing pathologies on cardiac CT scans and MRIs
(Table 1). By utilizing these various diagnostic modalities in conjunction with machine
learning, AI can aid physicians in not only accurately diagnosing pathologies, but also
allowing this to take place more efficiently. Despite these benefits, their direct implementa-
tion in cardiology requires rigorous validation, optimization, and customization to address
the intricacies of cardiac imaging data and the specificity of cardiovascular pathologies.
Future research endeavors should focus on tailoring AI algorithms to the nuances of car-
diac MRI and CT scans, ensuring their reliability, accuracy, and seamless integration into
routine clinical practice. Establishing robust AI-driven diagnostic frameworks specific to
cardiology holds immense promise in revolutionizing diagnostic precision and efficiency
in the field. This integration presents an exciting prospect for augmenting cardiovascular
diagnostics through innovative AI-powered solutions, potentially transforming the land-
scape of cardiac imaging interpretation and patient care. Lastly, in scenarios where AI is
employed to analyze complex medical images such as X-rays, CT scans, and MRIs, the
ability to understand and interpret the explainable AI-generated results becomes crucial.
Explainable AI techniques, such as saliency maps or attention mechanisms, enable health-
care professionals to comprehend the features within an image that contribute to the AI
model’s decision. This interpretability fosters trust among clinicians, allowing them to
validate and contextualize AI recommendations in the context of their clinical expertise.
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Table 1. Overview of AI applications in cardiology studies, highlighting diagnostic modalities,
performance metrics, and future considerations.

Study AI Application Diagnostic Modality Performance Metrics Future Considerations

[27] Deep neural networks
for ECG analysis ECG AUC: 0.97 and F1 score:

0.837

Interpretability and collaboration
between AI systems and clinical

expertise

[28]
AI-enabled ECG for

atrial fibrillation
prediction

Wearable ECG
monitors

AUC: 0.87, sensitivity:
79%, specificity: 79.5%,

and accuracy: 79.4%

Considerations for undetected atrial
fibrillation and prospective

calibration before widespread
application to a broader population

[33] AI in coronary
angiography and TAVR

Coronary angiography
and TAVR

Procedure time and
complication rate

reduction

Enhancing AI algorithms’
adaptability to diverse procedural

scenarios

AI has also demonstrated incredible promise in personalizing cardiovascular treat-
ments for distinct patient profiles, including genetic variables, medical histories, and
therapeutic responses [34]. Research conducted in 2019 explored the importance of person-
alized treatment based on individual genetic variations and its therapeutic response to the
antiplatelet therapy clopidogrel [35]. Similar studies have also used AI to predict responses
to statins based on machine learning and develop genetic and clinical characteristics [36]. AI
demonstrates great promise within a catheterization lab by giving certain voice commands
to the person operating the coronary angiography machine about how many degrees the
C-arm of the machine should move. Furthermore, it can analyze the ideal angle for a patient
based on various factors, such as their height and weight [33]. While performing certain
procedures, such as the transcatheter aortic valve replacement (TAVR), AI can comment
on the locations and sizes of the valves leading to reduced procedure times and potential
complications [33]. AI can not only assist with TAVR but also with the placement of devices
when it comes to other complications, such as atrial septal defect (ASD), ventricular septal
defect (VSD), and patent ductus arteriosus (PDA) as well [37]. The implementation of these
AI-driven systems holds immense potential to revolutionize cardiovascular care by offering
tailored and precise interventions. By leveraging AI’s analytical power, these systems
enable healthcare providers to deliver personalized care strategies, optimizing procedural
precision, mitigating risks, and ultimately improving patient outcomes. However, the full
integration of AI technologies in procedural settings requires extensive validation, refine-
ment, and seamless incorporation into existing workflows. Future directions in this domain
should focus on enhancing AI algorithms’ adaptability to diverse procedural scenarios,
ensuring their accuracy, and fostering collaborative frameworks between AI technology
and healthcare professionals. The successful integration of AI in procedural guidance
heralds a new era in personalized cardiovascular care, potentially reshaping treatment
paradigms and elevating patient care standards within cardiology.

AI plays a pivotal role in revolutionizing treatment planning and management strate-
gies for chronic cardiac conditions, significantly enhancing personalized patient care.
Through its capacity to analyze vast datasets and intricate patient profiles, AI facilitates
the development of tailored treatment plans that consider individual variations in genetic
predispositions, medical histories, and therapeutic responses [22,38]. By harnessing ma-
chine learning techniques, AI enables clinicians to predict treatment outcomes and tailor
interventions with higher precision. Moreover, in interventional cardiology procedures
like TAVR or device placements for conditions like ASD or VSD, AI assists in optimizing
procedural planning, reducing complications, and enhancing patient safety. The integration
of AI-driven decision support systems aids healthcare providers in delivering individual-
ized cardiovascular care, improving treatment efficacy, and ultimately elevating patient
outcomes in the management of chronic cardiac conditions [39].
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Another significant benefit of integrating AI in the field of cardiology is increasing
the focus on the human side of medicine. AI is a promising tool with the potential to
provide invaluable support to healthcare professionals in the crucial task of medical record
documentation. By utilizing AI technologies, healthcare practitioners can streamline the
process of recording patient information, diagnoses, treatments, and other essential data.
AI-powered solutions offer the capacity to automate data entry, categorize and code medical
information, and facilitate the creation of comprehensive electronic health records [40].
Moreover, AI can assist in improving the accuracy and completeness of medical records by
flagging potential errors, inconsistencies, or missing information in real time. This not only
contributes to more robust patient documentation but also reduces the risk of medical errors
and enhances patient safety. AI-driven natural language processing and speech recognition
tools can enable healthcare providers to transcribe spoken notes into written records,
further expediting the documentation process [41]. In addition to optimizing efficiency,
AI can assist in data analysis and pattern recognition within medical records, aiding
clinicians in identifying trends, potential risk factors, and personalized treatment options.
Overall, the integration of AI into medical record documentation promises to streamline
administrative tasks, enhance data accuracy, and free up valuable time for healthcare
professionals to focus on providing high-quality patient-centered care [42]. While the
integration of AI in medical record documentation presents significant advantages, its
implementation necessitates rigorous validation and continuous refinement to ensure the
utmost accuracy, reliability, and compliance with regulatory standards. Future endeavors
in this realm should strive to enhance AI algorithms’ interpretative capabilities, fortify
cybersecurity measures to safeguard patient data, and foster seamless integration with
existing healthcare systems. The evolution of AI-driven documentation holds the potential
to redefine administrative processes, laying the foundation for a more efficient, accurate,
and human-centered healthcare landscape.

Additionally, AI and language models can also aid in the automation of administrative
tasks in cardiology. By automating routine administrative tasks, these technologies can
free up time for healthcare professionals to focus on face-to-face patient care while also
improving operational efficiency [43]. Automation of these tasks can also help reduce
errors or discrepancies in the patient record. The implementation of these technologies can
allow healthcare professionals to spend more time with patients and bring back humanism
in medicine.

There are several further benefits of integrating AI into patient monitoring systems.
AI has the ability to continually assess vital signals, including heart rate, blood pressure,
and respiration rate, in real-time, allowing for the early identification of deteriorating
situations, earlier interventions, and improved outcomes [44]. AI calculations have been
able to distinguish early indications of cardiovascular events like arrhythmias and ischemia,
as shown by a study by Hannun et al. in 2019, which displayed earlier detections of
atrial fibrillation from the ECG data being provided [27]. AI has already played a part in
monitoring patients in all types of settings as various devices have features to monitor
vital signs while providing real-time feedback [45]. A study introduced a novel algorithm
combining two event-related moving averages (TERMA) and fractional Fourier transform
(FrFT) for enhanced analysis of ECG signals, improving the accuracy in locating peak
positions and diagnosing heart diseases. The algorithm outperformed existing methods
and utilized the Shaoxing People’s Hospital (SPH) database, which included over 10,000
patients, making it a more realistic dataset for training a machine-learning model [46]. In
addition to monitoring vital signs, these devices have great potential in the field of cardi-
ology by monitoring events such as malignant arrhythmias [47]. AI can also increase the
efficiency of the healthcare system by analyzing mass data quickly and accurately, leading
to lower workloads on healthcare professionals, thereby enhancing patient care [48]. Lastly,
wearable devices, such as smartwatches and trackers allow for remote monitoring, which
provides continuous insights into the patient’s health and leads to enhanced healthcare
for the patient [49]. These interventions play a pivotal role in enhancing patient safety by
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enabling healthcare providers to analyze extensive data efficiently and accurately, poten-
tially leading to earlier interventions and improved prognostic outcomes. The fusion of AI
into patient monitoring systems signifies a significant stride toward a more proactive and
precise healthcare approach, promising a paradigm shift in patient care and safety.

4. Decision Support Systems in Cardiovascular Health

A decision support system in a clinical setting is designed to enhance healthcare
delivery by providing targeted clinical knowledge while using specific patient data and
healthcare information [50]. Traditionally, clinical decision support systems (CDSS) are
mainly computerized software in which the specific patient data are then integrated with
the computerized clinical knowledge to recommend the best patient-based assessments,
along with recommendations that directly aid medical personnel in their clinical decision
making [51]. The introduction of computers to CDSS in the 1970s was very challenging as
physicians found it very time-consuming due to poor integration of the systems [52]. How-
ever, currently, the integration of electronic health records, computerized provider order
entry systems, and several different web applications has led to a much more interactive
and efficient CDSS [53].

The utilization of AI within the field of medical imaging has shown remarkable
progress [54]. AI-learned algorithms, combined with the use of neural networks, have
shown a high capacity to accurately analyze and diagnose medical images such as X-rays,
CTs, and MRIs, thereby assisting clinicians with their decision making [11]. Furthermore,
AI-driven CDSS provides real-time recommendations based on patient data, which include
identifying any potential drug interactions, formulating specific treatment plans with the
lowest side effects and risks, and predicting outcomes, which can all lead to improved
healthcare. In a study, clinical decision support systems were found to significantly en-
hance clinical practice in 68% of cases. Univariate analyses revealed that the presence of
certain system features significantly increased the likelihood of improving clinical practice.
Multiple logistic regression analysis identified four independent predictors of improved
clinical practice: automatic provision of decision support within clinician workflow, of-
fering recommendations alongside assessments, providing decision support at the time
and location of decision making, and utilizing computer-based decision support. Systems
incorporating all four of these features demonstrated a 94% success rate in improving
clinical practice [55]. In evaluating the impact of AI-driven clinical decision support sys-
tems (CDSS) and their integration into medical imaging analysis, it becomes evident that,
while these systems have shown significant promise in enhancing diagnostic accuracy and
aiding treatment planning, there is a need for further critical assessment. Although studies,
including those indicating the success rates in improving clinical practice by integrating
CDSS, have showcased substantial benefits, there remains a disparity in the comprehensive
assessment of varying AI-driven CDSS models and their efficacy across different medical
imaging modalities. The comparison of these findings with existing literature reveals a
growing consensus on the potential of AI in medical imaging; however, the diversity of
systems, data types, and clinical settings prompts a critical evaluation of the generalizability
and scalability of these systems. Addressing these gaps and delving deeper into the com-
parative effectiveness of distinct CDSS features across diverse clinical scenarios could offer
valuable insights. Moreover, future investigations might focus on refining AI algorithms to
enhance interpretability and transparency, crucial for building trust and acceptance among
healthcare providers, ultimately fostering seamless integration into routine clinical practice.
These steps could propel the field toward more standardized, reliable, and universally
applicable AI-driven CDSS in medical imaging and treatment planning.

Lastly, machine learning algorithms, when combined and integrated into electronic
health records, can be used to predict patient outcomes and risks, such as myocardial infarc-
tion, sepsis, and associated complications (Table 2) [56,57]. AI stands as a transformative
force in preventive cardiology through its prowess in predictive analytics. By analyzing ex-
tensive datasets encompassing patient health records, clinical parameters, and imaging data,
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AI models have demonstrated remarkable capabilities in risk assessment and predicting
cardiac events. These predictive models leverage machine learning algorithms to identify
patterns, discern risk factors, and forecast the likelihood of cardiovascular events with
higher accuracy than traditional methods [58]. In a study, the performance of deep learning
and machine learning models was compared to a baseline logistic regression model that
used only ‘known’ risk factors to predict incident myocardial infarction from harmonized
electronic health record data. The research involved a large-scale case-control study with
data from 2.27 million patients, including 20,591 patients diagnosed with MI. While a deep
neural network with random under-sampling showed the best classification performance,
it provided only a moderate improvement over traditional methods. The F1 Score was
0.092, and the area under the curve was 0.835, suggesting that deep neural networks may
not offer a significant advantage when trained on harmonized data compared to using well-
established risk factors for MI in logistic regression models. The calibration of all models
was suboptimal due to overfitting related to the low frequency of MI cases [57]. Machine
learning and deep learning applications for predicting sepsis using electronic health records
have gained attention for early intervention. A systematic review of 42 selected studies, out
of 1942 articles, revealed the predominance of retrospective studies, varying data sources,
and sepsis definitions and the importance of data augmentation. The review highlighted
the potential of ML/DL methods in sepsis detection and early prediction using electronic
health records data [56]. This led to a more proactive intervention by the healthcare team.
While these approaches show promise in early detection using electronic health records, the
predominance of retrospective studies and variations in data sources underscore the need
for standardized data practices and consistent definitions for robust predictive models.
These findings prompt a call for further research focusing on refining model calibration,
enhancing data quality, and establishing standardized protocols, ensuring the reliability
and scalability of ML-based predictive analytics in preventive cardiology. This could propel
these technologies toward more effective clinical applications and proactive healthcare
interventions.

Table 2. Overview of AI applications in CDSS for cardiology, detailing their implementation in
clinical settings, performance metrics, and future considerations.

Study AI Application CDSS in
Clinical Settings

Performance
Metrics Future Considerations

[55]
AI-driven CDSS

in clinical
practice

Real-time recom-
mendations

based on patient
data

68%
improvement in
clinical practice

Disparity in assessing various
AI-driven CDSS models

[56]
AI-driven CDSS

for sepsis
prediction

Predicting sepsis
outcomes

Potential in early
sepsis detection

Challenges in EHR data
quality and standardization

Prospective validation studies
for clinical impact

assessment.

[57]

AI-driven CDSS
for myocardial

infarction
prediction

Predicting
myocardial
infarction
outcomes

Moderate
improvement

over traditional
methods; F1

Score: 0.092 and
AUC: 0.835

Calibration challenges due to
overfitting from low-event

frequency
Adequate discrimination
despite poor calibration

In the landscape of AI cardiology, the algorithms employed play a pivotal role in
shaping CDSS. Traditional CDSS often relies on rule-based systems, where expert knowl-
edge is encoded into explicit decision rules. However, the integration of machine learning
algorithms has brought about transformative changes. Supervised learning algorithms,
such as Support Vector Machines and Random Forests, leverage historical patient data for
prediction tasks, while unsupervised learning algorithms, including clustering methods,
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contribute to identifying patient subgroups and disease patterns [59,60]. In particular, in
medical imaging, convolutional neural networks (CNNs) have demonstrated significant
promise in enhancing diagnostic accuracy, especially in interpreting cardiovascular imag-
ing. As the field progresses, the need for transparency and interpretability in AI-driven
decision making becomes increasingly important. Explainable AI algorithms, integrated
into CDSS, offer a way to demystify complex model outputs. Decision trees, with their
clear decision paths and model-agnostic techniques like LIME, provide interpretable expla-
nations for individual predictions. This emphasis on explainability not only fosters trust
among healthcare professionals but also ensures that AI recommendations align with the
logic of clinical expertise [61,62].

Explainable AI addresses a fundamental challenge associated with conventional AI
models, particularly deep learning algorithms, which are often considered “black boxes”
due to their complexity in making predictions. In the context of CDSS, where accurate
and trustworthy decision support is paramount, the interpretability of AI models becomes
critical. Explainable AI methods aim to provide transparency in AI-driven decision making,
offering insights into how algorithms arrive at specific conclusions [61]. This transparency
is especially relevant when these systems are assisting healthcare professionals in critical
decisions regarding patient care.

The implementation of AI-guided CDSS has many benefits and challenges. The
data-driven insights and support provided by CDSS can lead to better decision making
and enhanced decision quality [63]. The use of CDSS has led to significantly reduced
decision-making time, leading to earlier interventions and enhanced efficiency in terms of
the healthcare provided [64]. The integration of data with the use of computer software
and CDSS has provided medical personnel with a more comprehensive view of healthcare
in general [65]. Many CDSSs help with personalization and patient-tailored care as they
are user-specific [66]. However, CDSS depends on the quality of the data provided, and
any significant issues regarding data quality can lead to skewed results [67]. Furthermore,
the implementation and changes of CDSS can be challenging as certain integration, user
training, and infrastructures are often required for such modifications [68]. Lastly, the
high initial and ongoing expenses of CDSS systems prevent their widespread use and is
currently an ongoing challenge, which requires careful cost-benefit analysis [69].

5. Personalized Cardiology Using Machine Learning

Personalization in cardiac care is a developing topic that tries to customize medical
interventions and treatments specific to patients based on their needs. A study conducted
in 2015 used personalized genetic testing and risk assessments to identify the underly-
ing pathophysiology of complex cardiovascular disorders and thereby allowed for more
focused treatment and follow-ups [70]. Currently, there are personalized treatments for
conditions such as heart failure, hypertension, and myocardial infarction, and there is an
overall increased focus on multiple factors that allow for a tailored treatment based on
individuals’ particular conditions [71]. Personalized care extends beyond pharmacother-
apy or surgery and can include lifestyle modifications focused on assisting individuals
efficiently [72].

Machine learning techniques have been crucial in personalized medicine within the
field of cardiology. Machine learning was accurately used to identify and predict high-risk
patients with ST-elevation myocardial infarction (STEMI), highlighting the importance of
machine learning in preparing risk assessments and personalized plans for patients [73,74].
A study conducted in 2017 highlighted a deep learning model that consisted of cardiologist-
level accuracy in identifying and diagnosing arrhythmias, leading to much-needed inter-
ventions and monitoring within patients. This study focused on automating the evaluation
of strain in two populations of patients with acute myocardial infarction. Automated and
manual analyses were compared for agreement and predictive value in major adverse
cardiac events (MACE). The automated analysis showed good agreement with manual
assessment for GLS and global circumferential strain (GCS), and GLS was the only inde-
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pendent predictor of MACE among the automated analyses, indicating the potential for
automation to enhance efficiency and clinical implementation [75]. Along with identifying
and diagnosing conditions, machine learning has been able to analyze data to offer remote
monitoring and telemedicine catered toward individual patients. Previous research has
identified rhythm abnormalities such as atrial fibrillation with the use of personal devices
that have AI-enabled algorithms, allowing for timely and personalized interventions. A
novel algorithm for detecting sudden cardiac arrests on ECG aimed at improving the
performance of automated external defibrillators. The algorithm combined a convolutional
neural network as a feature extractor and a Boosting (BS) classifier, demonstrating high ac-
curacy in sudden cardiac arrest detection. By employing a grid search and nested five-fold
cross-validation, the CNNE was trained on preprocessed ECG data, leading to impressive
results with an accuracy of 99.26%, sensitivity of 97.07%, and specificity of 99.44%. This
approach enhanced the performance of the shock advice algorithm (SAA) for AEDs in
identifying shockable rhythms, such as ventricular fibrillation and ventricular tachycar-
dia [28,76]. The studies showcasing machine learning’s prowess in cardiology present
promising advancements in diagnosis, risk prediction, and remote monitoring. However, it
is crucial to critically assess these findings by considering their clinical applicability and
limitations. While ML algorithms exhibited impressive accuracy in identifying high-risk
patients for conditions like STEMI and predicting MACE, the translation of these findings
into real-world clinical settings warrants cautious consideration. The generalizability of
these models across diverse patient populations, the scalability of implementation in health-
care systems, and the potential biases inherent in training data need careful examination.
The high accuracy rates reported in these studies raise optimism, but a critical view must
consider the potential impact on real-time clinical decision-making, patient outcomes, and
the extent to which these algorithms might contribute to improving healthcare workflows
and efficiency. These critical analyses help contextualize the advancements made by ML
models in cardiology and emphasize the need for comprehensive validation and real-world
testing to ensure their clinical effectiveness and widespread applicability.

Machine learning techniques have also been able to use cardiac CT scans, along with
the coronary artery calcium score (Ca Score) framework, to automatically evaluate coronary
artery calcium scores, which have then allowed for more personalized assessments of
cardiovascular risk [77,78]. The first study aimed to evaluate methods for coronary artery
calcification scoring in cardiac CT, which is an essential predictor of cardiovascular disease
events. Four cardiovascular disease risk categories and data from 72 patients, including
calcium scoring CT (CSCT) and coronary CT angiography (CCTA) scans, were utilized.
The (semi)automatic approaches diagnosed 52% to 94% of coronary artery calcification
lesions correctly, with positive predictive values ranging from 65% to 96%. These meth-
ods demonstrated the feasibility of automatically categorizing patients’ cardiovascular
disease risk despite challenges in detecting coronary artery calcification lesions at certain
locations. Overall, this standardized framework facilitates coronary artery calcification
scoring assessment in cardiac CT [77]. Additionally, another study looked at an automated
method for quantifying coronary artery calcification in cardiac CT angiography (CCTA)
scans, which is a strong predictor of cardiovascular events. This method utilizes supervised
learning and does not require coronary artery extraction. A bounding box around the heart
is determined automatically, and convolutional neural networks (ConvNets) are used to
identify and quantify coronary artery calcification. An ensemble of ConvPairs achieved a
sensitivity of 71%, with 0.48 false positive errors per scan, demonstrating high accuracy
and excellent agreement with reference annotations in CCTA and CSCT. This method may
eliminate the need for a dedicated calcium scoring CT scan and reduce radiation dose
in patient care [78]. While the (semi)automatic methods showcased commendable accu-
racy rates in detecting coronary artery calcification lesions, the variability in performance
across different cardiovascular disease risk categories and lesion locations warrants careful
consideration. The observed challenges in detecting lesions at specific sites underscore
potential limitations in the algorithm’s generalizability to diverse patient populations and
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the need for further refinement. Future research endeavors should focus on validating
these automated methods across broader patient cohorts and diverse imaging protocols
to ensure their reliability and accuracy across varied clinical scenarios. Exploring the
integration of these algorithms into routine clinical workflows and assessing their impact
on cardiovascular risk assessment and patient outcomes will be crucial for their effective
implementation in clinical practice (Table 3).

Table 3. Overview of machine learning applications in various cardiology-focused areas, highlighting
performance metrics and future considerations.

Study Focus Area Machine Learning
Application Performance Metrics Future

Considerations

[73]
Risk prediction in
resource-limited

countries
STEMI

Improved mortality
prediction following

STEMI
Extra Tree ML model

demonstrated best
predictive ability

(sensitivity: 85%, AUC:
79.7%, and accuracy:

75%)

Clinical applicability
Generalizability
across diverse

patient populations
Reducing biases in

training data

[75]

Automated
volume-derived

cardiac functional
evaluation

CMR imaging and
automated strain

assessment

GLS and GCS best
predicted MACE with

high accuracy

Time-consuming
post-processing

Validation in broader
populations

[77]
(Semi)Automatic

CAC identification
in cardiac CT

Cardiac CT and
automated CAC

scoring

1. Detection of 52% to
94% of CAC lesions.
Positive predictive

values between 65%
and 96%. 2. Linearly

weighted Cohen’s
kappa for patient CVD

risk categorization
ranged from 0.80 to

1.00.

Missed lesions in
distal coronary

arteries
False positive errors
near coronary ostia

Challenges in
ambiguous locations

Clinical predictive models aid healthcare professionals and patients by assessing and
informing them about risks in terms of their health, with the aim of assisting decision
making and leading to improved outcomes [79]. A widely used predictive model for
determining the risks of developing CAD over a 10-year period is the Framingham risk
score (FRS) [80]. The FRS considers factors such as total cholesterol, HDL, age, gender,
smoking, and systolic blood pressure, which then assist in determining the risk of CVD
and providing patient-specific modifications in order to lower risks [81]. With the develop-
ments of machine learning and artificial intelligence, various models have been used to
analyze clinical and imaging data to interpret and generate risk prediction. Based on these
risk predictions, specific care and aid have been provided to patients, leading to better
outcomes [17]. A study used machine learning for the prediction of all-cause mortality in
patients suspected of CAD and helped clinicians with patient-specific care based on their
informed decisions and the risk stratifications provided by the predictive model [82]. Over-
all, the field of predictive modeling for patient-specific care holds great promise, leading to
more patient-centered and data-driven care, progressing to improved healthcare quality
in the coming decades [83]. Future research should focus on validating these ML-driven
predictive models across larger and more diverse patient cohorts to ascertain their relia-
bility, generalizability, and clinical utility. Furthermore, assessing the long-term impact of
these models on healthcare quality and patient outcomes will be crucial for their effective
integration into routine clinical practice. Collaborative efforts between researchers, health-
care providers, and data scientists are imperative to harness the full potential of predictive
modeling in advancing patient-centered care and improving healthcare quality in the years
ahead. Lastly, as machine learning techniques are leveraged to predict outcomes, recom-
mend therapies, and identify high-risk patients, understanding the rationale behind these
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predictions becomes paramount [84]. Explainable AI methods offer a means to elucidate
the decision-making process of complex models, providing healthcare professionals with
insights into the features and patterns contributing to personalized recommendations.

6. Challenges and Future Directions

The increasing use of AI in the field of cardiology presents both exciting opportunities
and significant challenges. Since AI produces outputs based solely on its training data,
one of the challenges is obtaining high-quality data for AI training and validation. Not
only can it be challenging to gather datasets for rare heart conditions, but also for patient
populations that are not well represented [5,85,86]. Moreover, these training datasets that
will be used for training need to be blinded or masked appropriately to ensure patient
privacy. These tools will require high security measures to prevent breaches or leaking
of any data. Additionally, AI systems have a tendency to replicate any bias that may be
present in their training dataset [87,88].

There are several ethical considerations that need to be made when utilizing AI in
healthcare. Securing sensitive patient data for training AI systems is not only a collection
challenge but also a vital element in preserving patient privacy. Robust encryption, access
controls, and regular monitoring are necessary to protect data from unauthorized access and
breaches. Incorporating privacy-preserving techniques like federated learning can reduce
data exposure risks while ensuring the security of training data. Overall, maintaining data
security is paramount for healthcare AI, ensuring the highest standards of patient privacy
and data protection. In addition, there may be concerns about liability and malpractice
because AI systems can potentially lead to a misdiagnosis or mistreatment, leading to
patient harm [89,90].

Cost and implementation present substantial hurdles in the widespread integration of
AI technology within cardiology. The initial investment required for adopting AI-driven
solutions, including the procurement of advanced hardware, software development, and
staff training, poses a significant financial burden on healthcare systems [91–93]. Moreover,
the ongoing maintenance and updates demand continuous investment. These expenses
might limit accessibility and adoption, particularly in healthcare settings with constrained
resources. The integration process itself demands a comprehensive restructuring of existing
workflows and infrastructure, which can be complex and time-consuming. Furthermore,
interoperability issues with existing systems and the need for seamless integration into
clinical practice add layers of complexity to the implementation process. Addressing these
challenges requires not only financial investment but also strategic planning, standardized
protocols, and collaboration among stakeholders to ensure a smooth and cost-effective
integration of AI technologies into cardiology practice.

Another notable concern revolves around the potential dependency on AI technology
within cardiology practice. While AI presents promising capabilities, over-reliance on
automated systems without adequate validation or human oversight could introduce
risks. Being entirely dependent on AI-generated insights or recommendations might lead
to complacency or errors in case of technological failures, inaccuracies, or unforeseen
circumstances [94,95]. It is imperative to maintain a balanced approach, integrating AI as a
supportive tool rather than a replacement for clinical judgment and expertise. Establishing
protocols for continuous validation, human supervision, and thorough verification of
AI-driven outcomes becomes paramount. Moreover, fostering a culture that encourages
critical appraisal of AI-generated outputs and encourages collaboration between healthcare
professionals and technology can mitigate the potential risks associated with overreliance
on AI in cardiology. Lastly, While AI algorithms excel in analyzing structured medical
data, their ability to account for external factors influencing health, such as interpersonal
ties and social determinants, presents inherent challenges. AI predominantly relies on
available healthcare data, often focusing on clinical parameters and biomedical markers.
Incorporating external socio-environmental factors, including interpersonal ties, presents
complexities due to the lack of standardized data collection and integration [43,96,97].
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Despite these challenges, the future of AI in the field of cardiology is promising.
Establishing clear guidelines and robust security measures for the utilization of patient
data in AI system training is imperative. These safeguards are essential to protect patient
privacy, maintain data integrity, and uphold ethical standards in healthcare AI development.
Such guidelines should encompass strict data access controls, encryption protocols, and
compliance with data protection regulations. Security measures should include data
anonymization or pseudonymization to prevent the identification of individual patients.
Access to patient data should be restricted to authorized personnel only, and audits should
be conducted to monitor data usage. Furthermore, consent and transparency are vital
components of using patient data for AI training. Patients should be informed about
how their data will be used and have the opportunity to provide or withhold consent.
Guidelines should also address the sharing and storage of data, ensuring that data remain
secure throughout its lifecycle [98].

In the rapidly evolving landscape of AI in healthcare, stringent regulation and vigilant
monitoring play a pivotal role in upholding patient safety. The application of AI technology
has immense potential to revolutionize healthcare, but it also introduces unique challenges,
particularly regarding patient data privacy, system validation, transparency, accountability,
and ethical considerations. Close regulatory oversight ensures that AI systems adhere to the
highest standards of performance, data security, and ethical practice. By striking the right
balance between innovation and safety, we can harness AI’s capabilities to enhance patient
care while safeguarding the well-being and privacy of individuals within the healthcare
ecosystem. Lastly, continuous education and training are of paramount importance to
ensure that healthcare professionals can effectively and consistently integrate AI systems
into their clinical practice. As AI technologies evolve and become more prominent in
healthcare, it is essential for medical practitioners to stay updated with the latest devel-
opments. Continuous education programs can empower healthcare professionals with
the knowledge and skills needed to harness AI’s full potential, enabling them to make
informed decisions, interpret AI-generated insights, and seamlessly incorporate AI tools
into their daily routines. This ongoing training not only enhances patient care but also
ensures that AI is used in a responsible and ethical manner, aligning with the evolving
landscape of healthcare delivery [99].

7. Conclusions

In conclusion, this narrative literature review highlights the potential of AI technology
to improve the quality of care delivered to patients. Through different applications, such
as cardiac imaging analysis, individualized therapy recommendations, real-time patient
monitoring, and decision support systems, AI-driven algorithms have shown immense
promise. AI has the potential to improve cardiovascular disease prevention, diagnosis,
treatment, and monitoring, thereby improving patient outcomes. Despite these beneficial
aspects, the application of AI in cardiology has a few concerns to overcome, such as data
quality and privacy. In addition, AI technology used in cardiology needs to be well-
regulated and monitored. AI has the potential to greatly lower the burden of cardiovascular
diseases and improve the overall quality of cardiac treatment for patients worldwide if
approached and implemented correctly.

8. Key Points

AI enhances diagnostic accuracy in interpreting various cardiac images, such as CT
scans, MRIs, and echocardiograms.

AI and language models streamline medical record documentation, automate adminis-
trative tasks, and improve operational efficiency, enabling healthcare professionals to focus
more on direct patient care.

Wearable devices and AI-powered systems facilitate remote patient monitoring, allow-
ing continuous real-time assessment of vital signs, early detection of cardiovascular events,
and a proactive healthcare approach.
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AI enhances clinical decision support systems, improving diagnostic accuracy and
aiding treatment planning in cardiovascular health.

Personalized cardiology benefits from machine learning, providing tailored interven-
tions, high-risk patient identification, and patient-specific treatments.

Challenges in AI implementation include obtaining quality data, addressing biases,
ensuring data privacy, and addressing ethical concerns and liabilities.

Future directions emphasize refining AI algorithms, validating predictive models,
and implementing guidelines for responsible AI use, with continuous education for
healthcare professionals.
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